This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanss | |- ( ( B C_ ~H /\ A C_ B ) -> ( span ` A ) C_ ( span ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 | |- ( A C_ B -> ( B C_ x -> A C_ x ) ) |
|
| 2 | 1 | adantr | |- ( ( A C_ B /\ x e. SH ) -> ( B C_ x -> A C_ x ) ) |
| 3 | 2 | ss2rabdv | |- ( A C_ B -> { x e. SH | B C_ x } C_ { x e. SH | A C_ x } ) |
| 4 | intss | |- ( { x e. SH | B C_ x } C_ { x e. SH | A C_ x } -> |^| { x e. SH | A C_ x } C_ |^| { x e. SH | B C_ x } ) |
|
| 5 | 3 4 | syl | |- ( A C_ B -> |^| { x e. SH | A C_ x } C_ |^| { x e. SH | B C_ x } ) |
| 6 | 5 | adantl | |- ( ( B C_ ~H /\ A C_ B ) -> |^| { x e. SH | A C_ x } C_ |^| { x e. SH | B C_ x } ) |
| 7 | sstr | |- ( ( A C_ B /\ B C_ ~H ) -> A C_ ~H ) |
|
| 8 | 7 | ancoms | |- ( ( B C_ ~H /\ A C_ B ) -> A C_ ~H ) |
| 9 | spanval | |- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
|
| 10 | 8 9 | syl | |- ( ( B C_ ~H /\ A C_ B ) -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
| 11 | spanval | |- ( B C_ ~H -> ( span ` B ) = |^| { x e. SH | B C_ x } ) |
|
| 12 | 11 | adantr | |- ( ( B C_ ~H /\ A C_ B ) -> ( span ` B ) = |^| { x e. SH | B C_ x } ) |
| 13 | 6 10 12 | 3sstr4d | |- ( ( B C_ ~H /\ A C_ B ) -> ( span ` A ) C_ ( span ` B ) ) |