This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpexp | |- ( ( A e. CC /\ B e. NN0 ) -> ( A ^c B ) = ( A ^ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
|
| 2 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 3 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 4 | 0cxp | |- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
|
| 5 | 2 3 4 | syl2anc | |- ( B e. NN -> ( 0 ^c B ) = 0 ) |
| 6 | 0exp | |- ( B e. NN -> ( 0 ^ B ) = 0 ) |
|
| 7 | 5 6 | eqtr4d | |- ( B e. NN -> ( 0 ^c B ) = ( 0 ^ B ) ) |
| 8 | 0cn | |- 0 e. CC |
|
| 9 | cxpval | |- ( ( 0 e. CC /\ 0 e. CC ) -> ( 0 ^c 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ` ( 0 x. ( log ` 0 ) ) ) ) ) |
|
| 10 | 8 8 9 | mp2an | |- ( 0 ^c 0 ) = if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ` ( 0 x. ( log ` 0 ) ) ) ) |
| 11 | eqid | |- 0 = 0 |
|
| 12 | 11 | iftruei | |- if ( 0 = 0 , if ( 0 = 0 , 1 , 0 ) , ( exp ` ( 0 x. ( log ` 0 ) ) ) ) = if ( 0 = 0 , 1 , 0 ) |
| 13 | 11 | iftruei | |- if ( 0 = 0 , 1 , 0 ) = 1 |
| 14 | 10 12 13 | 3eqtri | |- ( 0 ^c 0 ) = 1 |
| 15 | 0exp0e1 | |- ( 0 ^ 0 ) = 1 |
|
| 16 | 14 15 | eqtr4i | |- ( 0 ^c 0 ) = ( 0 ^ 0 ) |
| 17 | oveq2 | |- ( B = 0 -> ( 0 ^c B ) = ( 0 ^c 0 ) ) |
|
| 18 | oveq2 | |- ( B = 0 -> ( 0 ^ B ) = ( 0 ^ 0 ) ) |
|
| 19 | 16 17 18 | 3eqtr4a | |- ( B = 0 -> ( 0 ^c B ) = ( 0 ^ B ) ) |
| 20 | 7 19 | jaoi | |- ( ( B e. NN \/ B = 0 ) -> ( 0 ^c B ) = ( 0 ^ B ) ) |
| 21 | 1 20 | sylbi | |- ( B e. NN0 -> ( 0 ^c B ) = ( 0 ^ B ) ) |
| 22 | oveq1 | |- ( A = 0 -> ( A ^c B ) = ( 0 ^c B ) ) |
|
| 23 | oveq1 | |- ( A = 0 -> ( A ^ B ) = ( 0 ^ B ) ) |
|
| 24 | 22 23 | eqeq12d | |- ( A = 0 -> ( ( A ^c B ) = ( A ^ B ) <-> ( 0 ^c B ) = ( 0 ^ B ) ) ) |
| 25 | 21 24 | syl5ibrcom | |- ( B e. NN0 -> ( A = 0 -> ( A ^c B ) = ( A ^ B ) ) ) |
| 26 | 25 | adantl | |- ( ( A e. CC /\ B e. NN0 ) -> ( A = 0 -> ( A ^c B ) = ( A ^ B ) ) ) |
| 27 | 26 | imp | |- ( ( ( A e. CC /\ B e. NN0 ) /\ A = 0 ) -> ( A ^c B ) = ( A ^ B ) ) |
| 28 | nn0z | |- ( B e. NN0 -> B e. ZZ ) |
|
| 29 | cxpexpz | |- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |
|
| 30 | 29 | 3expa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |
| 31 | 28 30 | sylan2 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. NN0 ) -> ( A ^c B ) = ( A ^ B ) ) |
| 32 | 31 | an32s | |- ( ( ( A e. CC /\ B e. NN0 ) /\ A =/= 0 ) -> ( A ^c B ) = ( A ^ B ) ) |
| 33 | 27 32 | pm2.61dane | |- ( ( A e. CC /\ B e. NN0 ) -> ( A ^c B ) = ( A ^ B ) ) |