This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime power P ^ K has K + 1 divisors. (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sgmppw | |- ( ( P e. Prime /\ K e. NN0 ) -> ( 0 sigma ( P ^ K ) ) = ( K + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 2 | nnexpcl | |- ( ( P e. NN /\ K e. NN0 ) -> ( P ^ K ) e. NN ) |
|
| 3 | 1 2 | sylan | |- ( ( P e. Prime /\ K e. NN0 ) -> ( P ^ K ) e. NN ) |
| 4 | 0sgm | |- ( ( P ^ K ) e. NN -> ( 0 sigma ( P ^ K ) ) = ( # ` { x e. NN | x || ( P ^ K ) } ) ) |
|
| 5 | 3 4 | syl | |- ( ( P e. Prime /\ K e. NN0 ) -> ( 0 sigma ( P ^ K ) ) = ( # ` { x e. NN | x || ( P ^ K ) } ) ) |
| 6 | fzfid | |- ( ( P e. Prime /\ K e. NN0 ) -> ( 0 ... K ) e. Fin ) |
|
| 7 | eqid | |- ( n e. ( 0 ... K ) |-> ( P ^ n ) ) = ( n e. ( 0 ... K ) |-> ( P ^ n ) ) |
|
| 8 | 7 | dvdsppwf1o | |- ( ( P e. Prime /\ K e. NN0 ) -> ( n e. ( 0 ... K ) |-> ( P ^ n ) ) : ( 0 ... K ) -1-1-onto-> { x e. NN | x || ( P ^ K ) } ) |
| 9 | 6 8 | hasheqf1od | |- ( ( P e. Prime /\ K e. NN0 ) -> ( # ` ( 0 ... K ) ) = ( # ` { x e. NN | x || ( P ^ K ) } ) ) |
| 10 | 5 9 | eqtr4d | |- ( ( P e. Prime /\ K e. NN0 ) -> ( 0 sigma ( P ^ K ) ) = ( # ` ( 0 ... K ) ) ) |
| 11 | simpr | |- ( ( P e. Prime /\ K e. NN0 ) -> K e. NN0 ) |
|
| 12 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 13 | 11 12 | eleqtrdi | |- ( ( P e. Prime /\ K e. NN0 ) -> K e. ( ZZ>= ` 0 ) ) |
| 14 | hashfz | |- ( K e. ( ZZ>= ` 0 ) -> ( # ` ( 0 ... K ) ) = ( ( K - 0 ) + 1 ) ) |
|
| 15 | 13 14 | syl | |- ( ( P e. Prime /\ K e. NN0 ) -> ( # ` ( 0 ... K ) ) = ( ( K - 0 ) + 1 ) ) |
| 16 | nn0cn | |- ( K e. NN0 -> K e. CC ) |
|
| 17 | 16 | adantl | |- ( ( P e. Prime /\ K e. NN0 ) -> K e. CC ) |
| 18 | 17 | subid1d | |- ( ( P e. Prime /\ K e. NN0 ) -> ( K - 0 ) = K ) |
| 19 | 18 | oveq1d | |- ( ( P e. Prime /\ K e. NN0 ) -> ( ( K - 0 ) + 1 ) = ( K + 1 ) ) |
| 20 | 10 15 19 | 3eqtrd | |- ( ( P e. Prime /\ K e. NN0 ) -> ( 0 sigma ( P ^ K ) ) = ( K + 1 ) ) |