This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shftuz | |- ( ( A e. ZZ /\ B e. ZZ ) -> { x e. CC | ( x - A ) e. ( ZZ>= ` B ) } = ( ZZ>= ` ( B + A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. CC | ( x - A ) e. ( ZZ>= ` B ) } = { x | ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) } |
|
| 2 | simp2 | |- ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. CC ) |
|
| 3 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> A e. CC ) |
| 5 | 2 4 | npcand | |- ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> ( ( x - A ) + A ) = x ) |
| 6 | eluzadd | |- ( ( ( x - A ) e. ( ZZ>= ` B ) /\ A e. ZZ ) -> ( ( x - A ) + A ) e. ( ZZ>= ` ( B + A ) ) ) |
|
| 7 | 6 | ancoms | |- ( ( A e. ZZ /\ ( x - A ) e. ( ZZ>= ` B ) ) -> ( ( x - A ) + A ) e. ( ZZ>= ` ( B + A ) ) ) |
| 8 | 7 | 3adant2 | |- ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> ( ( x - A ) + A ) e. ( ZZ>= ` ( B + A ) ) ) |
| 9 | 5 8 | eqeltrrd | |- ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. ( ZZ>= ` ( B + A ) ) ) |
| 10 | 9 | 3expib | |- ( A e. ZZ -> ( ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. ( ZZ>= ` ( B + A ) ) ) ) |
| 11 | 10 | adantr | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. ( ZZ>= ` ( B + A ) ) ) ) |
| 12 | eluzelcn | |- ( x e. ( ZZ>= ` ( B + A ) ) -> x e. CC ) |
|
| 13 | 12 | a1i | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> x e. CC ) ) |
| 14 | eluzsub | |- ( ( B e. ZZ /\ A e. ZZ /\ x e. ( ZZ>= ` ( B + A ) ) ) -> ( x - A ) e. ( ZZ>= ` B ) ) |
|
| 15 | 14 | 3expia | |- ( ( B e. ZZ /\ A e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> ( x - A ) e. ( ZZ>= ` B ) ) ) |
| 16 | 15 | ancoms | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> ( x - A ) e. ( ZZ>= ` B ) ) ) |
| 17 | 13 16 | jcad | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) ) ) |
| 18 | 11 17 | impbid | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) <-> x e. ( ZZ>= ` ( B + A ) ) ) ) |
| 19 | 18 | eqabcdv | |- ( ( A e. ZZ /\ B e. ZZ ) -> { x | ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) } = ( ZZ>= ` ( B + A ) ) ) |
| 20 | 1 19 | eqtrid | |- ( ( A e. ZZ /\ B e. ZZ ) -> { x e. CC | ( x - A ) e. ( ZZ>= ` B ) } = ( ZZ>= ` ( B + A ) ) ) |