This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcaopr.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqcaopr.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( y .+ x ) ) |
||
| seqcaopr.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| seqcaopr.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqcaopr.5 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
||
| seqcaopr.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. S ) |
||
| seqcaopr.7 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) .+ ( G ` k ) ) ) |
||
| Assertion | seqcaopr | |- ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) .+ ( seq M ( .+ , G ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqcaopr.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( y .+ x ) ) |
|
| 3 | seqcaopr.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 4 | seqcaopr.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | seqcaopr.5 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
|
| 6 | seqcaopr.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. S ) |
|
| 7 | seqcaopr.7 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) .+ ( G ` k ) ) ) |
|
| 8 | 1 | caovclg | |- ( ( ph /\ ( a e. S /\ b e. S ) ) -> ( a .+ b ) e. S ) |
| 9 | simpl | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ph ) |
|
| 10 | simprrl | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> c e. S ) |
|
| 11 | simprlr | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> b e. S ) |
|
| 12 | 2 | caovcomg | |- ( ( ph /\ ( c e. S /\ b e. S ) ) -> ( c .+ b ) = ( b .+ c ) ) |
| 13 | 9 10 11 12 | syl12anc | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( c .+ b ) = ( b .+ c ) ) |
| 14 | 13 | oveq1d | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( ( c .+ b ) .+ d ) = ( ( b .+ c ) .+ d ) ) |
| 15 | simprrr | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> d e. S ) |
|
| 16 | 3 | caovassg | |- ( ( ph /\ ( c e. S /\ b e. S /\ d e. S ) ) -> ( ( c .+ b ) .+ d ) = ( c .+ ( b .+ d ) ) ) |
| 17 | 9 10 11 15 16 | syl13anc | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( ( c .+ b ) .+ d ) = ( c .+ ( b .+ d ) ) ) |
| 18 | 3 | caovassg | |- ( ( ph /\ ( b e. S /\ c e. S /\ d e. S ) ) -> ( ( b .+ c ) .+ d ) = ( b .+ ( c .+ d ) ) ) |
| 19 | 9 11 10 15 18 | syl13anc | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( ( b .+ c ) .+ d ) = ( b .+ ( c .+ d ) ) ) |
| 20 | 14 17 19 | 3eqtr3d | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( c .+ ( b .+ d ) ) = ( b .+ ( c .+ d ) ) ) |
| 21 | 20 | oveq2d | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( a .+ ( c .+ ( b .+ d ) ) ) = ( a .+ ( b .+ ( c .+ d ) ) ) ) |
| 22 | simprll | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> a e. S ) |
|
| 23 | 1 | caovclg | |- ( ( ph /\ ( b e. S /\ d e. S ) ) -> ( b .+ d ) e. S ) |
| 24 | 9 11 15 23 | syl12anc | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( b .+ d ) e. S ) |
| 25 | 3 | caovassg | |- ( ( ph /\ ( a e. S /\ c e. S /\ ( b .+ d ) e. S ) ) -> ( ( a .+ c ) .+ ( b .+ d ) ) = ( a .+ ( c .+ ( b .+ d ) ) ) ) |
| 26 | 9 22 10 24 25 | syl13anc | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( ( a .+ c ) .+ ( b .+ d ) ) = ( a .+ ( c .+ ( b .+ d ) ) ) ) |
| 27 | 1 | caovclg | |- ( ( ph /\ ( c e. S /\ d e. S ) ) -> ( c .+ d ) e. S ) |
| 28 | 27 | adantrl | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( c .+ d ) e. S ) |
| 29 | 3 | caovassg | |- ( ( ph /\ ( a e. S /\ b e. S /\ ( c .+ d ) e. S ) ) -> ( ( a .+ b ) .+ ( c .+ d ) ) = ( a .+ ( b .+ ( c .+ d ) ) ) ) |
| 30 | 9 22 11 28 29 | syl13anc | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( ( a .+ b ) .+ ( c .+ d ) ) = ( a .+ ( b .+ ( c .+ d ) ) ) ) |
| 31 | 21 26 30 | 3eqtr4d | |- ( ( ph /\ ( ( a e. S /\ b e. S ) /\ ( c e. S /\ d e. S ) ) ) -> ( ( a .+ c ) .+ ( b .+ d ) ) = ( ( a .+ b ) .+ ( c .+ d ) ) ) |
| 32 | 8 8 31 4 5 6 7 | seqcaopr2 | |- ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) .+ ( seq M ( .+ , G ) ` N ) ) ) |