This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovcomg.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
| Assertion | caovcomg | |- ( ( ph /\ ( A e. S /\ B e. S ) ) -> ( A F B ) = ( B F A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcomg.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
| 2 | 1 | ralrimivva | |- ( ph -> A. x e. S A. y e. S ( x F y ) = ( y F x ) ) |
| 3 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 4 | oveq2 | |- ( x = A -> ( y F x ) = ( y F A ) ) |
|
| 5 | 3 4 | eqeq12d | |- ( x = A -> ( ( x F y ) = ( y F x ) <-> ( A F y ) = ( y F A ) ) ) |
| 6 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 7 | oveq1 | |- ( y = B -> ( y F A ) = ( B F A ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( y = B -> ( ( A F y ) = ( y F A ) <-> ( A F B ) = ( B F A ) ) ) |
| 9 | 5 8 | rspc2v | |- ( ( A e. S /\ B e. S ) -> ( A. x e. S A. y e. S ( x F y ) = ( y F x ) -> ( A F B ) = ( B F A ) ) ) |
| 10 | 2 9 | mpan9 | |- ( ( ph /\ ( A e. S /\ B e. S ) ) -> ( A F B ) = ( B F A ) ) |