This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a section of G , then F is a monomorphism. Proposition 7.35 of Adamek p. 110. A monomorphism that arises from a section is also known as asplit monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectmon.b | |- B = ( Base ` C ) |
|
| sectmon.m | |- M = ( Mono ` C ) |
||
| sectmon.s | |- S = ( Sect ` C ) |
||
| sectmon.c | |- ( ph -> C e. Cat ) |
||
| sectmon.x | |- ( ph -> X e. B ) |
||
| sectmon.y | |- ( ph -> Y e. B ) |
||
| sectmon.1 | |- ( ph -> F ( X S Y ) G ) |
||
| Assertion | sectmon | |- ( ph -> F e. ( X M Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectmon.b | |- B = ( Base ` C ) |
|
| 2 | sectmon.m | |- M = ( Mono ` C ) |
|
| 3 | sectmon.s | |- S = ( Sect ` C ) |
|
| 4 | sectmon.c | |- ( ph -> C e. Cat ) |
|
| 5 | sectmon.x | |- ( ph -> X e. B ) |
|
| 6 | sectmon.y | |- ( ph -> Y e. B ) |
|
| 7 | sectmon.1 | |- ( ph -> F ( X S Y ) G ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 10 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 11 | 1 8 9 10 3 4 5 6 | issect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 12 | 7 11 | mpbid | |- ( ph -> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 13 | 12 | simp1d | |- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 14 | oveq2 | |- ( ( F ( <. x , X >. ( comp ` C ) Y ) g ) = ( F ( <. x , X >. ( comp ` C ) Y ) h ) -> ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) g ) ) = ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) h ) ) ) |
|
| 15 | 12 | simp3d | |- ( ph -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) |
| 16 | 15 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) |
| 17 | 16 | oveq1d | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) ( <. x , X >. ( comp ` C ) X ) g ) = ( ( ( Id ` C ) ` X ) ( <. x , X >. ( comp ` C ) X ) g ) ) |
| 18 | 4 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> C e. Cat ) |
| 19 | simplr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> x e. B ) |
|
| 20 | 5 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> X e. B ) |
| 21 | 6 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> Y e. B ) |
| 22 | simprl | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> g e. ( x ( Hom ` C ) X ) ) |
|
| 23 | 13 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> F e. ( X ( Hom ` C ) Y ) ) |
| 24 | 12 | simp2d | |- ( ph -> G e. ( Y ( Hom ` C ) X ) ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> G e. ( Y ( Hom ` C ) X ) ) |
| 26 | 1 8 9 18 19 20 21 22 23 20 25 | catass | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) ( <. x , X >. ( comp ` C ) X ) g ) = ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) g ) ) ) |
| 27 | 1 8 10 18 19 9 20 22 | catlid | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( ( Id ` C ) ` X ) ( <. x , X >. ( comp ` C ) X ) g ) = g ) |
| 28 | 17 26 27 | 3eqtr3d | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) g ) ) = g ) |
| 29 | 16 | oveq1d | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) ( <. x , X >. ( comp ` C ) X ) h ) = ( ( ( Id ` C ) ` X ) ( <. x , X >. ( comp ` C ) X ) h ) ) |
| 30 | simprr | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> h e. ( x ( Hom ` C ) X ) ) |
|
| 31 | 1 8 9 18 19 20 21 30 23 20 25 | catass | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) ( <. x , X >. ( comp ` C ) X ) h ) = ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) h ) ) ) |
| 32 | 1 8 10 18 19 9 20 30 | catlid | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( ( Id ` C ) ` X ) ( <. x , X >. ( comp ` C ) X ) h ) = h ) |
| 33 | 29 31 32 | 3eqtr3d | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) h ) ) = h ) |
| 34 | 28 33 | eqeq12d | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) g ) ) = ( G ( <. x , Y >. ( comp ` C ) X ) ( F ( <. x , X >. ( comp ` C ) Y ) h ) ) <-> g = h ) ) |
| 35 | 14 34 | imbitrid | |- ( ( ( ph /\ x e. B ) /\ ( g e. ( x ( Hom ` C ) X ) /\ h e. ( x ( Hom ` C ) X ) ) ) -> ( ( F ( <. x , X >. ( comp ` C ) Y ) g ) = ( F ( <. x , X >. ( comp ` C ) Y ) h ) -> g = h ) ) |
| 36 | 35 | ralrimivva | |- ( ( ph /\ x e. B ) -> A. g e. ( x ( Hom ` C ) X ) A. h e. ( x ( Hom ` C ) X ) ( ( F ( <. x , X >. ( comp ` C ) Y ) g ) = ( F ( <. x , X >. ( comp ` C ) Y ) h ) -> g = h ) ) |
| 37 | 36 | ralrimiva | |- ( ph -> A. x e. B A. g e. ( x ( Hom ` C ) X ) A. h e. ( x ( Hom ` C ) X ) ( ( F ( <. x , X >. ( comp ` C ) Y ) g ) = ( F ( <. x , X >. ( comp ` C ) Y ) h ) -> g = h ) ) |
| 38 | 1 8 9 2 4 5 6 | ismon2 | |- ( ph -> ( F e. ( X M Y ) <-> ( F e. ( X ( Hom ` C ) Y ) /\ A. x e. B A. g e. ( x ( Hom ` C ) X ) A. h e. ( x ( Hom ` C ) X ) ( ( F ( <. x , X >. ( comp ` C ) Y ) g ) = ( F ( <. x , X >. ( comp ` C ) Y ) h ) -> g = h ) ) ) ) |
| 39 | 13 37 38 | mpbir2and | |- ( ph -> F e. ( X M Y ) ) |