This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
||
| Assertion | sbthlem5 | |- ( ( dom f = A /\ ran g C_ A ) -> dom H = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
|
| 4 | 3 | dmeqi | |- dom H = dom ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
| 5 | dmun | |- dom ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) = ( dom ( f |` U. D ) u. dom ( `' g |` ( A \ U. D ) ) ) |
|
| 6 | dmres | |- dom ( f |` U. D ) = ( U. D i^i dom f ) |
|
| 7 | dmres | |- dom ( `' g |` ( A \ U. D ) ) = ( ( A \ U. D ) i^i dom `' g ) |
|
| 8 | df-rn | |- ran g = dom `' g |
|
| 9 | 8 | eqcomi | |- dom `' g = ran g |
| 10 | 9 | ineq2i | |- ( ( A \ U. D ) i^i dom `' g ) = ( ( A \ U. D ) i^i ran g ) |
| 11 | 7 10 | eqtri | |- dom ( `' g |` ( A \ U. D ) ) = ( ( A \ U. D ) i^i ran g ) |
| 12 | 6 11 | uneq12i | |- ( dom ( f |` U. D ) u. dom ( `' g |` ( A \ U. D ) ) ) = ( ( U. D i^i dom f ) u. ( ( A \ U. D ) i^i ran g ) ) |
| 13 | 5 12 | eqtri | |- dom ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) = ( ( U. D i^i dom f ) u. ( ( A \ U. D ) i^i ran g ) ) |
| 14 | 4 13 | eqtri | |- dom H = ( ( U. D i^i dom f ) u. ( ( A \ U. D ) i^i ran g ) ) |
| 15 | 1 2 | sbthlem1 | |- U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) |
| 16 | difss | |- ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A |
|
| 17 | 15 16 | sstri | |- U. D C_ A |
| 18 | sseq2 | |- ( dom f = A -> ( U. D C_ dom f <-> U. D C_ A ) ) |
|
| 19 | 17 18 | mpbiri | |- ( dom f = A -> U. D C_ dom f ) |
| 20 | dfss | |- ( U. D C_ dom f <-> U. D = ( U. D i^i dom f ) ) |
|
| 21 | 19 20 | sylib | |- ( dom f = A -> U. D = ( U. D i^i dom f ) ) |
| 22 | 21 | uneq1d | |- ( dom f = A -> ( U. D u. ( A \ U. D ) ) = ( ( U. D i^i dom f ) u. ( A \ U. D ) ) ) |
| 23 | 1 2 | sbthlem3 | |- ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) |
| 24 | imassrn | |- ( g " ( B \ ( f " U. D ) ) ) C_ ran g |
|
| 25 | 23 24 | eqsstrrdi | |- ( ran g C_ A -> ( A \ U. D ) C_ ran g ) |
| 26 | dfss | |- ( ( A \ U. D ) C_ ran g <-> ( A \ U. D ) = ( ( A \ U. D ) i^i ran g ) ) |
|
| 27 | 25 26 | sylib | |- ( ran g C_ A -> ( A \ U. D ) = ( ( A \ U. D ) i^i ran g ) ) |
| 28 | 27 | uneq2d | |- ( ran g C_ A -> ( ( U. D i^i dom f ) u. ( A \ U. D ) ) = ( ( U. D i^i dom f ) u. ( ( A \ U. D ) i^i ran g ) ) ) |
| 29 | 22 28 | sylan9eq | |- ( ( dom f = A /\ ran g C_ A ) -> ( U. D u. ( A \ U. D ) ) = ( ( U. D i^i dom f ) u. ( ( A \ U. D ) i^i ran g ) ) ) |
| 30 | 14 29 | eqtr4id | |- ( ( dom f = A /\ ran g C_ A ) -> dom H = ( U. D u. ( A \ U. D ) ) ) |
| 31 | undif | |- ( U. D C_ A <-> ( U. D u. ( A \ U. D ) ) = A ) |
|
| 32 | 17 31 | mpbi | |- ( U. D u. ( A \ U. D ) ) = A |
| 33 | 30 32 | eqtrdi | |- ( ( dom f = A /\ ran g C_ A ) -> dom H = A ) |