This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| Assertion | sbthlem1 | |- U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | unissb | |- ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) <-> A. x e. D x C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
|
| 4 | 2 | eqabri | |- ( x e. D <-> ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) ) |
| 5 | difss2 | |- ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> ( g " ( B \ ( f " x ) ) ) C_ A ) |
|
| 6 | ssconb | |- ( ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ A ) -> ( x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) <-> ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) ) |
|
| 7 | 6 | exbiri | |- ( x C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) ) ) |
| 8 | 5 7 | syl5 | |- ( x C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) ) ) |
| 9 | 8 | pm2.43d | |- ( x C_ A -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) ) |
| 10 | 9 | imp | |- ( ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) |
| 11 | 4 10 | sylbi | |- ( x e. D -> x C_ ( A \ ( g " ( B \ ( f " x ) ) ) ) ) |
| 12 | elssuni | |- ( x e. D -> x C_ U. D ) |
|
| 13 | imass2 | |- ( x C_ U. D -> ( f " x ) C_ ( f " U. D ) ) |
|
| 14 | sscon | |- ( ( f " x ) C_ ( f " U. D ) -> ( B \ ( f " U. D ) ) C_ ( B \ ( f " x ) ) ) |
|
| 15 | 12 13 14 | 3syl | |- ( x e. D -> ( B \ ( f " U. D ) ) C_ ( B \ ( f " x ) ) ) |
| 16 | imass2 | |- ( ( B \ ( f " U. D ) ) C_ ( B \ ( f " x ) ) -> ( g " ( B \ ( f " U. D ) ) ) C_ ( g " ( B \ ( f " x ) ) ) ) |
|
| 17 | sscon | |- ( ( g " ( B \ ( f " U. D ) ) ) C_ ( g " ( B \ ( f " x ) ) ) -> ( A \ ( g " ( B \ ( f " x ) ) ) ) C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
|
| 18 | 15 16 17 | 3syl | |- ( x e. D -> ( A \ ( g " ( B \ ( f " x ) ) ) ) C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 19 | 11 18 | sstrd | |- ( x e. D -> x C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 20 | 3 19 | mprgbir | |- U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) |