This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| Assertion | sbthlem3 | |- ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | 1 2 | sbthlem2 | |- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) |
| 4 | 1 2 | sbthlem1 | |- U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) |
| 5 | 3 4 | jctil | |- ( ran g C_ A -> ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) /\ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) ) |
| 6 | eqss | |- ( U. D = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) <-> ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) /\ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) ) |
|
| 7 | 5 6 | sylibr | |- ( ran g C_ A -> U. D = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 8 | 7 | difeq2d | |- ( ran g C_ A -> ( A \ U. D ) = ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
| 9 | imassrn | |- ( g " ( B \ ( f " U. D ) ) ) C_ ran g |
|
| 10 | sstr2 | |- ( ( g " ( B \ ( f " U. D ) ) ) C_ ran g -> ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) C_ A ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) C_ A ) |
| 12 | dfss4 | |- ( ( g " ( B \ ( f " U. D ) ) ) C_ A <-> ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) = ( g " ( B \ ( f " U. D ) ) ) ) |
|
| 13 | 11 12 | sylib | |- ( ran g C_ A -> ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) = ( g " ( B \ ( f " U. D ) ) ) ) |
| 14 | 8 13 | eqtr2d | |- ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) |