This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
||
| Assertion | sbthlem6 | |- ( ( ran f C_ B /\ ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) ) -> ran H = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
|
| 4 | rnun | |- ran ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) = ( ran ( f |` U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) |
|
| 5 | 3 | rneqi | |- ran H = ran ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
| 6 | df-ima | |- ( f " U. D ) = ran ( f |` U. D ) |
|
| 7 | 6 | uneq1i | |- ( ( f " U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) = ( ran ( f |` U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) |
| 8 | 4 5 7 | 3eqtr4i | |- ran H = ( ( f " U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) |
| 9 | 1 2 | sbthlem4 | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |
| 10 | df-ima | |- ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) |
|
| 11 | 9 10 | eqtr3di | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
| 12 | 11 | uneq2d | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) = ( ( f " U. D ) u. ran ( `' g |` ( A \ U. D ) ) ) ) |
| 13 | 8 12 | eqtr4id | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ran H = ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) ) |
| 14 | imassrn | |- ( f " U. D ) C_ ran f |
|
| 15 | sstr2 | |- ( ( f " U. D ) C_ ran f -> ( ran f C_ B -> ( f " U. D ) C_ B ) ) |
|
| 16 | 14 15 | ax-mp | |- ( ran f C_ B -> ( f " U. D ) C_ B ) |
| 17 | undif | |- ( ( f " U. D ) C_ B <-> ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) = B ) |
|
| 18 | 16 17 | sylib | |- ( ran f C_ B -> ( ( f " U. D ) u. ( B \ ( f " U. D ) ) ) = B ) |
| 19 | 13 18 | sylan9eqr | |- ( ( ran f C_ B /\ ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) ) -> ran H = B ) |