This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient group RR / ZZ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rzgrp.r | |- R = ( RRfld /s ( RRfld ~QG ZZ ) ) |
|
| Assertion | rzgrp | |- R e. Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzgrp.r | |- R = ( RRfld /s ( RRfld ~QG ZZ ) ) |
|
| 2 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 3 | zssre | |- ZZ C_ RR |
|
| 4 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 5 | 4 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 6 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 7 | 6 | subsubrg | |- ( RR e. ( SubRing ` CCfld ) -> ( ZZ e. ( SubRing ` RRfld ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ RR ) ) ) |
| 8 | 5 7 | ax-mp | |- ( ZZ e. ( SubRing ` RRfld ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ RR ) ) |
| 9 | 2 3 8 | mpbir2an | |- ZZ e. ( SubRing ` RRfld ) |
| 10 | subrgsubg | |- ( ZZ e. ( SubRing ` RRfld ) -> ZZ e. ( SubGrp ` RRfld ) ) |
|
| 11 | 9 10 | ax-mp | |- ZZ e. ( SubGrp ` RRfld ) |
| 12 | simpl | |- ( ( x e. RR /\ y e. RR ) -> x e. RR ) |
|
| 13 | 12 | recnd | |- ( ( x e. RR /\ y e. RR ) -> x e. CC ) |
| 14 | simpr | |- ( ( x e. RR /\ y e. RR ) -> y e. RR ) |
|
| 15 | 14 | recnd | |- ( ( x e. RR /\ y e. RR ) -> y e. CC ) |
| 16 | 13 15 | addcomd | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) = ( y + x ) ) |
| 17 | 16 | eleq1d | |- ( ( x e. RR /\ y e. RR ) -> ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) ) |
| 18 | 17 | rgen2 | |- A. x e. RR A. y e. RR ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) |
| 19 | rebase | |- RR = ( Base ` RRfld ) |
|
| 20 | replusg | |- + = ( +g ` RRfld ) |
|
| 21 | 19 20 | isnsg | |- ( ZZ e. ( NrmSGrp ` RRfld ) <-> ( ZZ e. ( SubGrp ` RRfld ) /\ A. x e. RR A. y e. RR ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) ) ) |
| 22 | 11 18 21 | mpbir2an | |- ZZ e. ( NrmSGrp ` RRfld ) |
| 23 | 1 | qusgrp | |- ( ZZ e. ( NrmSGrp ` RRfld ) -> R e. Grp ) |
| 24 | 22 23 | ax-mp | |- R e. Grp |