This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient group RR / ZZ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rzgrp.r | ⊢ 𝑅 = ( ℝfld /s ( ℝfld ~QG ℤ ) ) | |
| Assertion | rzgrp | ⊢ 𝑅 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzgrp.r | ⊢ 𝑅 = ( ℝfld /s ( ℝfld ~QG ℤ ) ) | |
| 2 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 3 | zssre | ⊢ ℤ ⊆ ℝ | |
| 4 | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) | |
| 5 | 4 | simpli | ⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 6 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 7 | 6 | subsubrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ( ℤ ∈ ( SubRing ‘ ℝfld ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℝ ) ) ) |
| 8 | 5 7 | ax-mp | ⊢ ( ℤ ∈ ( SubRing ‘ ℝfld ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℝ ) ) |
| 9 | 2 3 8 | mpbir2an | ⊢ ℤ ∈ ( SubRing ‘ ℝfld ) |
| 10 | subrgsubg | ⊢ ( ℤ ∈ ( SubRing ‘ ℝfld ) → ℤ ∈ ( SubGrp ‘ ℝfld ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ℤ ∈ ( SubGrp ‘ ℝfld ) |
| 12 | simpl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 13 | 12 | recnd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 14 | simpr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 15 | 14 | recnd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 16 | 13 15 | addcomd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 17 | 16 | eleq1d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) ) |
| 18 | 17 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) |
| 19 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 20 | replusg | ⊢ + = ( +g ‘ ℝfld ) | |
| 21 | 19 20 | isnsg | ⊢ ( ℤ ∈ ( NrmSGrp ‘ ℝfld ) ↔ ( ℤ ∈ ( SubGrp ‘ ℝfld ) ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( 𝑥 + 𝑦 ) ∈ ℤ ↔ ( 𝑦 + 𝑥 ) ∈ ℤ ) ) ) |
| 22 | 11 18 21 | mpbir2an | ⊢ ℤ ∈ ( NrmSGrp ‘ ℝfld ) |
| 23 | 1 | qusgrp | ⊢ ( ℤ ∈ ( NrmSGrp ‘ ℝfld ) → 𝑅 ∈ Grp ) |
| 24 | 22 23 | ax-mp | ⊢ 𝑅 ∈ Grp |