This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . The first components of the G sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
||
| ruc.5 | |- G = seq 0 ( D , C ) |
||
| ruclem9.6 | |- ( ph -> M e. NN0 ) |
||
| ruclem9.7 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| Assertion | ruclem9 | |- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 4 | ruc.5 | |- G = seq 0 ( D , C ) |
|
| 5 | ruclem9.6 | |- ( ph -> M e. NN0 ) |
|
| 6 | ruclem9.7 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 7 | 2fveq3 | |- ( k = M -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` M ) ) ) |
|
| 8 | 7 | breq2d | |- ( k = M -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) ) |
| 9 | 2fveq3 | |- ( k = M -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` M ) ) ) |
|
| 10 | 9 | breq1d | |- ( k = M -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 11 | 8 10 | anbi12d | |- ( k = M -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 12 | 11 | imbi2d | |- ( k = M -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 13 | 2fveq3 | |- ( k = n -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` n ) ) ) |
|
| 14 | 13 | breq2d | |- ( k = n -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) ) ) |
| 15 | 2fveq3 | |- ( k = n -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` n ) ) ) |
|
| 16 | 15 | breq1d | |- ( k = n -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 17 | 14 16 | anbi12d | |- ( k = n -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 18 | 17 | imbi2d | |- ( k = n -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 19 | 2fveq3 | |- ( k = ( n + 1 ) -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` ( n + 1 ) ) ) ) |
|
| 20 | 19 | breq2d | |- ( k = ( n + 1 ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
| 21 | 2fveq3 | |- ( k = ( n + 1 ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` ( n + 1 ) ) ) ) |
|
| 22 | 21 | breq1d | |- ( k = ( n + 1 ) -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 23 | 20 22 | anbi12d | |- ( k = ( n + 1 ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 24 | 23 | imbi2d | |- ( k = ( n + 1 ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 25 | 2fveq3 | |- ( k = N -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` N ) ) ) |
|
| 26 | 25 | breq2d | |- ( k = N -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) ) ) |
| 27 | 2fveq3 | |- ( k = N -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` N ) ) ) |
|
| 28 | 27 | breq1d | |- ( k = N -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 29 | 26 28 | anbi12d | |- ( k = N -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 30 | 29 | imbi2d | |- ( k = N -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 31 | 1 2 3 4 | ruclem6 | |- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| 32 | 31 5 | ffvelcdmd | |- ( ph -> ( G ` M ) e. ( RR X. RR ) ) |
| 33 | xp1st | |- ( ( G ` M ) e. ( RR X. RR ) -> ( 1st ` ( G ` M ) ) e. RR ) |
|
| 34 | 32 33 | syl | |- ( ph -> ( 1st ` ( G ` M ) ) e. RR ) |
| 35 | 34 | leidd | |- ( ph -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) |
| 36 | xp2nd | |- ( ( G ` M ) e. ( RR X. RR ) -> ( 2nd ` ( G ` M ) ) e. RR ) |
|
| 37 | 32 36 | syl | |- ( ph -> ( 2nd ` ( G ` M ) ) e. RR ) |
| 38 | 37 | leidd | |- ( ph -> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) |
| 39 | 35 38 | jca | |- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 40 | 1 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> F : NN --> RR ) |
| 41 | 2 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 42 | 31 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> G : NN0 --> ( RR X. RR ) ) |
| 43 | eluznn0 | |- ( ( M e. NN0 /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) |
|
| 44 | 5 43 | sylan | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) |
| 45 | 42 44 | ffvelcdmd | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) e. ( RR X. RR ) ) |
| 46 | xp1st | |- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 48 | xp2nd | |- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
|
| 49 | 45 48 | syl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 50 | nn0p1nn | |- ( n e. NN0 -> ( n + 1 ) e. NN ) |
|
| 51 | 44 50 | syl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN ) |
| 52 | 40 51 | ffvelcdmd | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( F ` ( n + 1 ) ) e. RR ) |
| 53 | eqid | |- ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
|
| 54 | eqid | |- ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
|
| 55 | 1 2 3 4 | ruclem8 | |- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) |
| 56 | 44 55 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) |
| 57 | 40 41 47 49 52 53 54 56 | ruclem2 | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) < ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) ) |
| 58 | 57 | simp1d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
| 59 | 1 2 3 4 | ruclem7 | |- ( ( ph /\ n e. NN0 ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) |
| 60 | 44 59 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) |
| 61 | 1st2nd2 | |- ( ( G ` n ) e. ( RR X. RR ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
|
| 62 | 45 61 | syl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
| 63 | 62 | oveq1d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( G ` n ) D ( F ` ( n + 1 ) ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
| 64 | 60 63 | eqtrd | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
| 65 | 64 | fveq2d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
| 66 | 58 65 | breqtrrd | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) |
| 67 | 34 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` M ) ) e. RR ) |
| 68 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 69 | 44 68 | syl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN0 ) |
| 70 | 42 69 | ffvelcdmd | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) e. ( RR X. RR ) ) |
| 71 | xp1st | |- ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) |
|
| 72 | 70 71 | syl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) |
| 73 | letr | |- ( ( ( 1st ` ( G ` M ) ) e. RR /\ ( 1st ` ( G ` n ) ) e. RR /\ ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
|
| 74 | 67 47 72 73 | syl3anc | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
| 75 | 66 74 | mpan2d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
| 76 | 64 | fveq2d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
| 77 | 57 | simp3d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) |
| 78 | 76 77 | eqbrtrd | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) ) |
| 79 | xp2nd | |- ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) |
|
| 80 | 70 79 | syl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) |
| 81 | 37 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` M ) ) e. RR ) |
| 82 | letr | |- ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR /\ ( 2nd ` ( G ` n ) ) e. RR /\ ( 2nd ` ( G ` M ) ) e. RR ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
|
| 83 | 80 49 81 82 | syl3anc | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 84 | 78 83 | mpand | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 85 | 75 84 | anim12d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 86 | 85 | expcom | |- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 87 | 86 | a2d | |- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 88 | 12 18 24 30 39 87 | uzind4i | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 89 | 6 88 | mpcom | |- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |