This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Ordering property for the input to D . (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruclem1.3 | |- ( ph -> A e. RR ) |
||
| ruclem1.4 | |- ( ph -> B e. RR ) |
||
| ruclem1.5 | |- ( ph -> M e. RR ) |
||
| ruclem1.6 | |- X = ( 1st ` ( <. A , B >. D M ) ) |
||
| ruclem1.7 | |- Y = ( 2nd ` ( <. A , B >. D M ) ) |
||
| ruclem2.8 | |- ( ph -> A < B ) |
||
| Assertion | ruclem2 | |- ( ph -> ( A <_ X /\ X < Y /\ Y <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruclem1.3 | |- ( ph -> A e. RR ) |
|
| 4 | ruclem1.4 | |- ( ph -> B e. RR ) |
|
| 5 | ruclem1.5 | |- ( ph -> M e. RR ) |
|
| 6 | ruclem1.6 | |- X = ( 1st ` ( <. A , B >. D M ) ) |
|
| 7 | ruclem1.7 | |- Y = ( 2nd ` ( <. A , B >. D M ) ) |
|
| 8 | ruclem2.8 | |- ( ph -> A < B ) |
|
| 9 | 3 | leidd | |- ( ph -> A <_ A ) |
| 10 | 3 4 | readdcld | |- ( ph -> ( A + B ) e. RR ) |
| 11 | 10 | rehalfcld | |- ( ph -> ( ( A + B ) / 2 ) e. RR ) |
| 12 | 11 4 | readdcld | |- ( ph -> ( ( ( A + B ) / 2 ) + B ) e. RR ) |
| 13 | 12 | rehalfcld | |- ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) |
| 14 | avglt1 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A < ( ( A + B ) / 2 ) ) ) |
|
| 15 | 3 4 14 | syl2anc | |- ( ph -> ( A < B <-> A < ( ( A + B ) / 2 ) ) ) |
| 16 | 8 15 | mpbid | |- ( ph -> A < ( ( A + B ) / 2 ) ) |
| 17 | avglt2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
|
| 18 | 3 4 17 | syl2anc | |- ( ph -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
| 19 | 8 18 | mpbid | |- ( ph -> ( ( A + B ) / 2 ) < B ) |
| 20 | avglt1 | |- ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
|
| 21 | 11 4 20 | syl2anc | |- ( ph -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 22 | 19 21 | mpbid | |- ( ph -> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 23 | 3 11 13 16 22 | lttrd | |- ( ph -> A < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 24 | 3 13 23 | ltled | |- ( ph -> A <_ ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 25 | breq2 | |- ( A = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> ( A <_ A <-> A <_ if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) ) |
|
| 26 | breq2 | |- ( ( ( ( ( A + B ) / 2 ) + B ) / 2 ) = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> ( A <_ ( ( ( ( A + B ) / 2 ) + B ) / 2 ) <-> A <_ if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) ) |
|
| 27 | 25 26 | ifboth | |- ( ( A <_ A /\ A <_ ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> A <_ if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 28 | 9 24 27 | syl2anc | |- ( ph -> A <_ if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 29 | 1 2 3 4 5 6 7 | ruclem1 | |- ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |
| 30 | 29 | simp2d | |- ( ph -> X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 31 | 28 30 | breqtrrd | |- ( ph -> A <_ X ) |
| 32 | iftrue | |- ( ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) = A ) |
|
| 33 | iftrue | |- ( ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) = ( ( A + B ) / 2 ) ) |
|
| 34 | 32 33 | breq12d | |- ( ( ( A + B ) / 2 ) < M -> ( if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) < if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) <-> A < ( ( A + B ) / 2 ) ) ) |
| 35 | 16 34 | syl5ibrcom | |- ( ph -> ( ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) < if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |
| 36 | avglt2 | |- ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) < B ) ) |
|
| 37 | 11 4 36 | syl2anc | |- ( ph -> ( ( ( A + B ) / 2 ) < B <-> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) < B ) ) |
| 38 | 19 37 | mpbid | |- ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) < B ) |
| 39 | iffalse | |- ( -. ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
|
| 40 | iffalse | |- ( -. ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) = B ) |
|
| 41 | 39 40 | breq12d | |- ( -. ( ( A + B ) / 2 ) < M -> ( if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) < if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) <-> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) < B ) ) |
| 42 | 38 41 | syl5ibrcom | |- ( ph -> ( -. ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) < if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |
| 43 | 35 42 | pm2.61d | |- ( ph -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) < if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 44 | 29 | simp3d | |- ( ph -> Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 45 | 43 30 44 | 3brtr4d | |- ( ph -> X < Y ) |
| 46 | 11 4 19 | ltled | |- ( ph -> ( ( A + B ) / 2 ) <_ B ) |
| 47 | 4 | leidd | |- ( ph -> B <_ B ) |
| 48 | breq1 | |- ( ( ( A + B ) / 2 ) = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) -> ( ( ( A + B ) / 2 ) <_ B <-> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) <_ B ) ) |
|
| 49 | breq1 | |- ( B = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) -> ( B <_ B <-> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) <_ B ) ) |
|
| 50 | 48 49 | ifboth | |- ( ( ( ( A + B ) / 2 ) <_ B /\ B <_ B ) -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) <_ B ) |
| 51 | 46 47 50 | syl2anc | |- ( ph -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) <_ B ) |
| 52 | 44 51 | eqbrtrd | |- ( ph -> Y <_ B ) |
| 53 | 31 45 52 | 3jca | |- ( ph -> ( A <_ X /\ X < Y /\ Y <_ B ) ) |