This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| Assertion | rrxprds | |- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 | refld | |- RRfld e. Field |
|
| 5 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 6 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 7 | 5 6 | frlmpws | |- ( ( RRfld e. Field /\ I e. V ) -> ( RRfld freeLMod I ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) |
| 8 | 4 7 | mpan | |- ( I e. V -> ( RRfld freeLMod I ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) |
| 9 | fvex | |- ( ( subringAlg ` RRfld ) ` RR ) e. _V |
|
| 10 | rlmval | |- ( ringLMod ` RRfld ) = ( ( subringAlg ` RRfld ) ` ( Base ` RRfld ) ) |
|
| 11 | rebase | |- RR = ( Base ` RRfld ) |
|
| 12 | 11 | fveq2i | |- ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` ( Base ` RRfld ) ) |
| 13 | 10 12 | eqtr4i | |- ( ringLMod ` RRfld ) = ( ( subringAlg ` RRfld ) ` RR ) |
| 14 | 13 | oveq1i | |- ( ( ringLMod ` RRfld ) ^s I ) = ( ( ( subringAlg ` RRfld ) ` RR ) ^s I ) |
| 15 | 11 | ressid | |- ( RRfld e. Field -> ( RRfld |`s RR ) = RRfld ) |
| 16 | 4 15 | ax-mp | |- ( RRfld |`s RR ) = RRfld |
| 17 | eqidd | |- ( T. -> ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` RR ) ) |
|
| 18 | 11 | eqimssi | |- RR C_ ( Base ` RRfld ) |
| 19 | 18 | a1i | |- ( T. -> RR C_ ( Base ` RRfld ) ) |
| 20 | 17 19 | srasca | |- ( T. -> ( RRfld |`s RR ) = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) ) |
| 21 | 20 | mptru | |- ( RRfld |`s RR ) = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) |
| 22 | 16 21 | eqtr3i | |- RRfld = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) |
| 23 | 14 22 | pwsval | |- ( ( ( ( subringAlg ` RRfld ) ` RR ) e. _V /\ I e. V ) -> ( ( ringLMod ` RRfld ) ^s I ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
| 24 | 9 23 | mpan | |- ( I e. V -> ( ( ringLMod ` RRfld ) ^s I ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
| 25 | 24 | eqcomd | |- ( I e. V -> ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( ( ringLMod ` RRfld ) ^s I ) ) |
| 26 | 3 | fveq2d | |- ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 27 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 28 | 27 6 | tcphbas | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 29 | 26 2 28 | 3eqtr4g | |- ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 30 | 25 29 | oveq12d | |- ( I e. V -> ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) |
| 31 | 8 30 | eqtr4d | |- ( I e. V -> ( RRfld freeLMod I ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
| 32 | 31 | fveq2d | |- ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| 33 | 3 32 | eqtrd | |- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |