This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphnmval.n | |- N = ( norm ` G ) |
||
| tcphnmval.v | |- V = ( Base ` W ) |
||
| tcphnmval.h | |- ., = ( .i ` W ) |
||
| Assertion | tchnmfval | |- ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphnmval.n | |- N = ( norm ` G ) |
|
| 3 | tcphnmval.v | |- V = ( Base ` W ) |
|
| 4 | tcphnmval.h | |- ., = ( .i ` W ) |
|
| 5 | eqid | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
|
| 6 | fvrn0 | |- ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) |
|
| 7 | 6 | a1i | |- ( x e. V -> ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) ) |
| 8 | 5 7 | fmpti | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) |
| 9 | 1 3 4 | tcphval | |- G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 10 | cnex | |- CC e. _V |
|
| 11 | sqrtf | |- sqrt : CC --> CC |
|
| 12 | frn | |- ( sqrt : CC --> CC -> ran sqrt C_ CC ) |
|
| 13 | 11 12 | ax-mp | |- ran sqrt C_ CC |
| 14 | 10 13 | ssexi | |- ran sqrt e. _V |
| 15 | p0ex | |- { (/) } e. _V |
|
| 16 | 14 15 | unex | |- ( ran sqrt u. { (/) } ) e. _V |
| 17 | 9 3 16 | tngnm | |- ( ( W e. Grp /\ ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) ) -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( norm ` G ) ) |
| 18 | 8 17 | mpan2 | |- ( W e. Grp -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( norm ` G ) ) |
| 19 | 2 18 | eqtr4id | |- ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |