This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem8 | |- ( ( A C_ NN /\ M e. NN ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( M - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 4 | simpr | |- ( ( A C_ NN /\ M e. NN ) -> M e. NN ) |
|
| 5 | eqidd | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) = ( ( F ` A ) ` k ) ) |
|
| 6 | 1 | rpnnen2lem2 | |- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
| 7 | 6 | adantr | |- ( ( A C_ NN /\ M e. NN ) -> ( F ` A ) : NN --> RR ) |
| 8 | 7 | ffvelcdmda | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
| 9 | 8 | recnd | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. CC ) |
| 10 | 1nn | |- 1 e. NN |
|
| 11 | 1 | rpnnen2lem5 | |- ( ( A C_ NN /\ 1 e. NN ) -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
| 12 | 10 11 | mpan2 | |- ( A C_ NN -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
| 13 | 12 | adantr | |- ( ( A C_ NN /\ M e. NN ) -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
| 14 | 2 3 4 5 9 13 | isumsplit | |- ( ( A C_ NN /\ M e. NN ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( M - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) ) ) |