This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi instead. In a unital ring the zero equals the ring unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uznzr.1 | |- G = ( 1st ` R ) |
|
| uznzr.2 | |- H = ( 2nd ` R ) |
||
| uznzr.3 | |- Z = ( GId ` G ) |
||
| uznzr.4 | |- U = ( GId ` H ) |
||
| uznzr.5 | |- X = ran G |
||
| Assertion | rngoueqz | |- ( R e. RingOps -> ( X ~~ 1o <-> U = Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uznzr.1 | |- G = ( 1st ` R ) |
|
| 2 | uznzr.2 | |- H = ( 2nd ` R ) |
|
| 3 | uznzr.3 | |- Z = ( GId ` G ) |
|
| 4 | uznzr.4 | |- U = ( GId ` H ) |
|
| 5 | uznzr.5 | |- X = ran G |
|
| 6 | 1 5 3 | rngo0cl | |- ( R e. RingOps -> Z e. X ) |
| 7 | en1eqsn | |- ( ( Z e. X /\ X ~~ 1o ) -> X = { Z } ) |
|
| 8 | 1 | rneqi | |- ran G = ran ( 1st ` R ) |
| 9 | 8 2 4 | rngo1cl | |- ( R e. RingOps -> U e. ran G ) |
| 10 | eleq2 | |- ( X = { Z } -> ( U e. X <-> U e. { Z } ) ) |
|
| 11 | 10 | biimpd | |- ( X = { Z } -> ( U e. X -> U e. { Z } ) ) |
| 12 | elsni | |- ( U e. { Z } -> U = Z ) |
|
| 13 | 11 12 | syl6com | |- ( U e. X -> ( X = { Z } -> U = Z ) ) |
| 14 | 5 | eqcomi | |- ran G = X |
| 15 | 13 14 | eleq2s | |- ( U e. ran G -> ( X = { Z } -> U = Z ) ) |
| 16 | 9 15 | syl | |- ( R e. RingOps -> ( X = { Z } -> U = Z ) ) |
| 17 | 7 16 | syl5com | |- ( ( Z e. X /\ X ~~ 1o ) -> ( R e. RingOps -> U = Z ) ) |
| 18 | 17 | ex | |- ( Z e. X -> ( X ~~ 1o -> ( R e. RingOps -> U = Z ) ) ) |
| 19 | 18 | com23 | |- ( Z e. X -> ( R e. RingOps -> ( X ~~ 1o -> U = Z ) ) ) |
| 20 | 6 19 | mpcom | |- ( R e. RingOps -> ( X ~~ 1o -> U = Z ) ) |
| 21 | 1 5 | rngone0 | |- ( R e. RingOps -> X =/= (/) ) |
| 22 | oveq2 | |- ( U = Z -> ( x H U ) = ( x H Z ) ) |
|
| 23 | 22 | ralrimivw | |- ( U = Z -> A. x e. X ( x H U ) = ( x H Z ) ) |
| 24 | 3 5 1 2 | rngorz | |- ( ( R e. RingOps /\ x e. X ) -> ( x H Z ) = Z ) |
| 25 | 24 | ralrimiva | |- ( R e. RingOps -> A. x e. X ( x H Z ) = Z ) |
| 26 | 5 8 | eqtri | |- X = ran ( 1st ` R ) |
| 27 | 2 26 4 | rngoridm | |- ( ( R e. RingOps /\ x e. X ) -> ( x H U ) = x ) |
| 28 | 27 | ralrimiva | |- ( R e. RingOps -> A. x e. X ( x H U ) = x ) |
| 29 | r19.26 | |- ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) <-> ( A. x e. X ( x H U ) = x /\ A. x e. X ( x H U ) = ( x H Z ) ) ) |
|
| 30 | r19.26 | |- ( A. x e. X ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) <-> ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ A. x e. X ( x H Z ) = Z ) ) |
|
| 31 | eqtr | |- ( ( x = ( x H U ) /\ ( x H U ) = ( x H Z ) ) -> x = ( x H Z ) ) |
|
| 32 | eqtr | |- ( ( x = ( x H Z ) /\ ( x H Z ) = Z ) -> x = Z ) |
|
| 33 | 32 | ex | |- ( x = ( x H Z ) -> ( ( x H Z ) = Z -> x = Z ) ) |
| 34 | 31 33 | syl | |- ( ( x = ( x H U ) /\ ( x H U ) = ( x H Z ) ) -> ( ( x H Z ) = Z -> x = Z ) ) |
| 35 | 34 | ex | |- ( x = ( x H U ) -> ( ( x H U ) = ( x H Z ) -> ( ( x H Z ) = Z -> x = Z ) ) ) |
| 36 | 35 | eqcoms | |- ( ( x H U ) = x -> ( ( x H U ) = ( x H Z ) -> ( ( x H Z ) = Z -> x = Z ) ) ) |
| 37 | 36 | imp31 | |- ( ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) -> x = Z ) |
| 38 | 37 | ralimi | |- ( A. x e. X ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) -> A. x e. X x = Z ) |
| 39 | eqsn | |- ( X =/= (/) -> ( X = { Z } <-> A. x e. X x = Z ) ) |
|
| 40 | ensn1g | |- ( Z e. X -> { Z } ~~ 1o ) |
|
| 41 | 6 40 | syl | |- ( R e. RingOps -> { Z } ~~ 1o ) |
| 42 | breq1 | |- ( X = { Z } -> ( X ~~ 1o <-> { Z } ~~ 1o ) ) |
|
| 43 | 41 42 | imbitrrid | |- ( X = { Z } -> ( R e. RingOps -> X ~~ 1o ) ) |
| 44 | 39 43 | biimtrrdi | |- ( X =/= (/) -> ( A. x e. X x = Z -> ( R e. RingOps -> X ~~ 1o ) ) ) |
| 45 | 44 | com3l | |- ( A. x e. X x = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 46 | 38 45 | syl | |- ( A. x e. X ( ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ ( x H Z ) = Z ) -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 47 | 30 46 | sylbir | |- ( ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) /\ A. x e. X ( x H Z ) = Z ) -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 48 | 47 | ex | |- ( A. x e. X ( ( x H U ) = x /\ ( x H U ) = ( x H Z ) ) -> ( A. x e. X ( x H Z ) = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) ) |
| 49 | 29 48 | sylbir | |- ( ( A. x e. X ( x H U ) = x /\ A. x e. X ( x H U ) = ( x H Z ) ) -> ( A. x e. X ( x H Z ) = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) ) |
| 50 | 49 | ex | |- ( A. x e. X ( x H U ) = x -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( A. x e. X ( x H Z ) = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) ) ) |
| 51 | 50 | com24 | |- ( A. x e. X ( x H U ) = x -> ( R e. RingOps -> ( A. x e. X ( x H Z ) = Z -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( X =/= (/) -> X ~~ 1o ) ) ) ) ) |
| 52 | 28 51 | mpcom | |- ( R e. RingOps -> ( A. x e. X ( x H Z ) = Z -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( X =/= (/) -> X ~~ 1o ) ) ) ) |
| 53 | 25 52 | mpd | |- ( R e. RingOps -> ( A. x e. X ( x H U ) = ( x H Z ) -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 54 | 23 53 | syl5com | |- ( U = Z -> ( R e. RingOps -> ( X =/= (/) -> X ~~ 1o ) ) ) |
| 55 | 54 | com13 | |- ( X =/= (/) -> ( R e. RingOps -> ( U = Z -> X ~~ 1o ) ) ) |
| 56 | 21 55 | mpcom | |- ( R e. RingOps -> ( U = Z -> X ~~ 1o ) ) |
| 57 | 20 56 | impbid | |- ( R e. RingOps -> ( X ~~ 1o <-> U = Z ) ) |