This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a ring is the same as left multiplication by -u 1 . (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneg.1 | |- G = ( 1st ` R ) |
|
| ringneg.2 | |- H = ( 2nd ` R ) |
||
| ringneg.3 | |- X = ran G |
||
| ringneg.4 | |- N = ( inv ` G ) |
||
| ringneg.5 | |- U = ( GId ` H ) |
||
| Assertion | rngonegmn1l | |- ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) = ( ( N ` U ) H A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneg.1 | |- G = ( 1st ` R ) |
|
| 2 | ringneg.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringneg.3 | |- X = ran G |
|
| 4 | ringneg.4 | |- N = ( inv ` G ) |
|
| 5 | ringneg.5 | |- U = ( GId ` H ) |
|
| 6 | 1 | rneqi | |- ran G = ran ( 1st ` R ) |
| 7 | 3 6 | eqtri | |- X = ran ( 1st ` R ) |
| 8 | 7 2 5 | rngo1cl | |- ( R e. RingOps -> U e. X ) |
| 9 | 1 3 4 | rngonegcl | |- ( ( R e. RingOps /\ U e. X ) -> ( N ` U ) e. X ) |
| 10 | 8 9 | mpdan | |- ( R e. RingOps -> ( N ` U ) e. X ) |
| 11 | 8 10 | jca | |- ( R e. RingOps -> ( U e. X /\ ( N ` U ) e. X ) ) |
| 12 | 1 2 3 | rngodir | |- ( ( R e. RingOps /\ ( U e. X /\ ( N ` U ) e. X /\ A e. X ) ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 13 | 12 | 3exp2 | |- ( R e. RingOps -> ( U e. X -> ( ( N ` U ) e. X -> ( A e. X -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) ) ) ) |
| 14 | 13 | imp42 | |- ( ( ( R e. RingOps /\ ( U e. X /\ ( N ` U ) e. X ) ) /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 15 | 14 | an32s | |- ( ( ( R e. RingOps /\ A e. X ) /\ ( U e. X /\ ( N ` U ) e. X ) ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 16 | 11 15 | mpidan | |- ( ( R e. RingOps /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( ( U H A ) G ( ( N ` U ) H A ) ) ) |
| 17 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 18 | 1 3 4 17 | rngoaddneg1 | |- ( ( R e. RingOps /\ U e. X ) -> ( U G ( N ` U ) ) = ( GId ` G ) ) |
| 19 | 8 18 | mpdan | |- ( R e. RingOps -> ( U G ( N ` U ) ) = ( GId ` G ) ) |
| 20 | 19 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> ( U G ( N ` U ) ) = ( GId ` G ) ) |
| 21 | 20 | oveq1d | |- ( ( R e. RingOps /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( ( GId ` G ) H A ) ) |
| 22 | 17 3 1 2 | rngolz | |- ( ( R e. RingOps /\ A e. X ) -> ( ( GId ` G ) H A ) = ( GId ` G ) ) |
| 23 | 21 22 | eqtrd | |- ( ( R e. RingOps /\ A e. X ) -> ( ( U G ( N ` U ) ) H A ) = ( GId ` G ) ) |
| 24 | 2 7 5 | rngolidm | |- ( ( R e. RingOps /\ A e. X ) -> ( U H A ) = A ) |
| 25 | 24 | oveq1d | |- ( ( R e. RingOps /\ A e. X ) -> ( ( U H A ) G ( ( N ` U ) H A ) ) = ( A G ( ( N ` U ) H A ) ) ) |
| 26 | 16 23 25 | 3eqtr3rd | |- ( ( R e. RingOps /\ A e. X ) -> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) |
| 27 | 1 2 3 | rngocl | |- ( ( R e. RingOps /\ ( N ` U ) e. X /\ A e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 28 | 27 | 3expa | |- ( ( ( R e. RingOps /\ ( N ` U ) e. X ) /\ A e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 29 | 28 | an32s | |- ( ( ( R e. RingOps /\ A e. X ) /\ ( N ` U ) e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 30 | 10 29 | mpidan | |- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) H A ) e. X ) |
| 31 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 32 | 3 17 4 | grpoinvid1 | |- ( ( G e. GrpOp /\ A e. X /\ ( ( N ` U ) H A ) e. X ) -> ( ( N ` A ) = ( ( N ` U ) H A ) <-> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) ) |
| 33 | 31 32 | syl3an1 | |- ( ( R e. RingOps /\ A e. X /\ ( ( N ` U ) H A ) e. X ) -> ( ( N ` A ) = ( ( N ` U ) H A ) <-> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) ) |
| 34 | 30 33 | mpd3an3 | |- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` A ) = ( ( N ` U ) H A ) <-> ( A G ( ( N ` U ) H A ) ) = ( GId ` G ) ) ) |
| 35 | 26 34 | mpbird | |- ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) = ( ( N ` U ) H A ) ) |