This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlz.1 | |- Z = ( GId ` G ) |
|
| ringlz.2 | |- X = ran G |
||
| ringlz.3 | |- G = ( 1st ` R ) |
||
| ringlz.4 | |- H = ( 2nd ` R ) |
||
| Assertion | rngorz | |- ( ( R e. RingOps /\ A e. X ) -> ( A H Z ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlz.1 | |- Z = ( GId ` G ) |
|
| 2 | ringlz.2 | |- X = ran G |
|
| 3 | ringlz.3 | |- G = ( 1st ` R ) |
|
| 4 | ringlz.4 | |- H = ( 2nd ` R ) |
|
| 5 | 3 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 6 | 2 1 | grpoidcl | |- ( G e. GrpOp -> Z e. X ) |
| 7 | 2 1 | grpolid | |- ( ( G e. GrpOp /\ Z e. X ) -> ( Z G Z ) = Z ) |
| 8 | 5 6 7 | syl2anc2 | |- ( R e. RingOps -> ( Z G Z ) = Z ) |
| 9 | 8 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> ( Z G Z ) = Z ) |
| 10 | 9 | oveq2d | |- ( ( R e. RingOps /\ A e. X ) -> ( A H ( Z G Z ) ) = ( A H Z ) ) |
| 11 | simpr | |- ( ( R e. RingOps /\ A e. X ) -> A e. X ) |
|
| 12 | 3 2 1 | rngo0cl | |- ( R e. RingOps -> Z e. X ) |
| 13 | 12 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> Z e. X ) |
| 14 | 11 13 13 | 3jca | |- ( ( R e. RingOps /\ A e. X ) -> ( A e. X /\ Z e. X /\ Z e. X ) ) |
| 15 | 3 4 2 | rngodi | |- ( ( R e. RingOps /\ ( A e. X /\ Z e. X /\ Z e. X ) ) -> ( A H ( Z G Z ) ) = ( ( A H Z ) G ( A H Z ) ) ) |
| 16 | 14 15 | syldan | |- ( ( R e. RingOps /\ A e. X ) -> ( A H ( Z G Z ) ) = ( ( A H Z ) G ( A H Z ) ) ) |
| 17 | 5 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> G e. GrpOp ) |
| 18 | 3 4 2 | rngocl | |- ( ( R e. RingOps /\ A e. X /\ Z e. X ) -> ( A H Z ) e. X ) |
| 19 | 13 18 | mpd3an3 | |- ( ( R e. RingOps /\ A e. X ) -> ( A H Z ) e. X ) |
| 20 | 2 1 | grpolid | |- ( ( G e. GrpOp /\ ( A H Z ) e. X ) -> ( Z G ( A H Z ) ) = ( A H Z ) ) |
| 21 | 20 | eqcomd | |- ( ( G e. GrpOp /\ ( A H Z ) e. X ) -> ( A H Z ) = ( Z G ( A H Z ) ) ) |
| 22 | 17 19 21 | syl2anc | |- ( ( R e. RingOps /\ A e. X ) -> ( A H Z ) = ( Z G ( A H Z ) ) ) |
| 23 | 10 16 22 | 3eqtr3d | |- ( ( R e. RingOps /\ A e. X ) -> ( ( A H Z ) G ( A H Z ) ) = ( Z G ( A H Z ) ) ) |
| 24 | 2 | grporcan | |- ( ( G e. GrpOp /\ ( ( A H Z ) e. X /\ Z e. X /\ ( A H Z ) e. X ) ) -> ( ( ( A H Z ) G ( A H Z ) ) = ( Z G ( A H Z ) ) <-> ( A H Z ) = Z ) ) |
| 25 | 17 19 13 19 24 | syl13anc | |- ( ( R e. RingOps /\ A e. X ) -> ( ( ( A H Z ) G ( A H Z ) ) = ( Z G ( A H Z ) ) <-> ( A H Z ) = Z ) ) |
| 26 | 23 25 | mpbid | |- ( ( R e. RingOps /\ A e. X ) -> ( A H Z ) = Z ) |