This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi instead. In a unital ring the zero equals the ring unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uznzr.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| uznzr.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| uznzr.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| uznzr.4 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | ||
| uznzr.5 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | rngoueqz | ⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o ↔ 𝑈 = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uznzr.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | uznzr.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | uznzr.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 4 | uznzr.4 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | |
| 5 | uznzr.5 | ⊢ 𝑋 = ran 𝐺 | |
| 6 | 1 5 3 | rngo0cl | ⊢ ( 𝑅 ∈ RingOps → 𝑍 ∈ 𝑋 ) |
| 7 | en1eqsn | ⊢ ( ( 𝑍 ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → 𝑋 = { 𝑍 } ) | |
| 8 | 1 | rneqi | ⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
| 9 | 8 2 4 | rngo1cl | ⊢ ( 𝑅 ∈ RingOps → 𝑈 ∈ ran 𝐺 ) |
| 10 | eleq2 | ⊢ ( 𝑋 = { 𝑍 } → ( 𝑈 ∈ 𝑋 ↔ 𝑈 ∈ { 𝑍 } ) ) | |
| 11 | 10 | biimpd | ⊢ ( 𝑋 = { 𝑍 } → ( 𝑈 ∈ 𝑋 → 𝑈 ∈ { 𝑍 } ) ) |
| 12 | elsni | ⊢ ( 𝑈 ∈ { 𝑍 } → 𝑈 = 𝑍 ) | |
| 13 | 11 12 | syl6com | ⊢ ( 𝑈 ∈ 𝑋 → ( 𝑋 = { 𝑍 } → 𝑈 = 𝑍 ) ) |
| 14 | 5 | eqcomi | ⊢ ran 𝐺 = 𝑋 |
| 15 | 13 14 | eleq2s | ⊢ ( 𝑈 ∈ ran 𝐺 → ( 𝑋 = { 𝑍 } → 𝑈 = 𝑍 ) ) |
| 16 | 9 15 | syl | ⊢ ( 𝑅 ∈ RingOps → ( 𝑋 = { 𝑍 } → 𝑈 = 𝑍 ) ) |
| 17 | 7 16 | syl5com | ⊢ ( ( 𝑍 ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → ( 𝑅 ∈ RingOps → 𝑈 = 𝑍 ) ) |
| 18 | 17 | ex | ⊢ ( 𝑍 ∈ 𝑋 → ( 𝑋 ≈ 1o → ( 𝑅 ∈ RingOps → 𝑈 = 𝑍 ) ) ) |
| 19 | 18 | com23 | ⊢ ( 𝑍 ∈ 𝑋 → ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o → 𝑈 = 𝑍 ) ) ) |
| 20 | 6 19 | mpcom | ⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o → 𝑈 = 𝑍 ) ) |
| 21 | 1 5 | rngone0 | ⊢ ( 𝑅 ∈ RingOps → 𝑋 ≠ ∅ ) |
| 22 | oveq2 | ⊢ ( 𝑈 = 𝑍 → ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) | |
| 23 | 22 | ralrimivw | ⊢ ( 𝑈 = 𝑍 → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) |
| 24 | 3 5 1 2 | rngorz | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑍 ) = 𝑍 ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 ) |
| 26 | 5 8 | eqtri | ⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
| 27 | 2 26 4 | rngoridm | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑈 ) = 𝑥 ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 ) |
| 29 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ) | |
| 30 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) ↔ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 ) ) | |
| 31 | eqtr | ⊢ ( ( 𝑥 = ( 𝑥 𝐻 𝑈 ) ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → 𝑥 = ( 𝑥 𝐻 𝑍 ) ) | |
| 32 | eqtr | ⊢ ( ( 𝑥 = ( 𝑥 𝐻 𝑍 ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → 𝑥 = 𝑍 ) | |
| 33 | 32 | ex | ⊢ ( 𝑥 = ( 𝑥 𝐻 𝑍 ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) |
| 34 | 31 33 | syl | ⊢ ( ( 𝑥 = ( 𝑥 𝐻 𝑈 ) ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) |
| 35 | 34 | ex | ⊢ ( 𝑥 = ( 𝑥 𝐻 𝑈 ) → ( ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) ) |
| 36 | 35 | eqcoms | ⊢ ( ( 𝑥 𝐻 𝑈 ) = 𝑥 → ( ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) ) |
| 37 | 36 | imp31 | ⊢ ( ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → 𝑥 = 𝑍 ) |
| 38 | 37 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 ) |
| 39 | eqsn | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 = { 𝑍 } ↔ ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 ) ) | |
| 40 | ensn1g | ⊢ ( 𝑍 ∈ 𝑋 → { 𝑍 } ≈ 1o ) | |
| 41 | 6 40 | syl | ⊢ ( 𝑅 ∈ RingOps → { 𝑍 } ≈ 1o ) |
| 42 | breq1 | ⊢ ( 𝑋 = { 𝑍 } → ( 𝑋 ≈ 1o ↔ { 𝑍 } ≈ 1o ) ) | |
| 43 | 41 42 | imbitrrid | ⊢ ( 𝑋 = { 𝑍 } → ( 𝑅 ∈ RingOps → 𝑋 ≈ 1o ) ) |
| 44 | 39 43 | biimtrrdi | ⊢ ( 𝑋 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → ( 𝑅 ∈ RingOps → 𝑋 ≈ 1o ) ) ) |
| 45 | 44 | com3l | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 46 | 38 45 | syl | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 47 | 30 46 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 48 | 47 | ex | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) |
| 49 | 29 48 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) |
| 50 | 49 | ex | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) ) |
| 51 | 50 | com24 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 → ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) ) |
| 52 | 28 51 | mpcom | ⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) |
| 53 | 25 52 | mpd | ⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 54 | 23 53 | syl5com | ⊢ ( 𝑈 = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 55 | 54 | com13 | ⊢ ( 𝑋 ≠ ∅ → ( 𝑅 ∈ RingOps → ( 𝑈 = 𝑍 → 𝑋 ≈ 1o ) ) ) |
| 56 | 21 55 | mpcom | ⊢ ( 𝑅 ∈ RingOps → ( 𝑈 = 𝑍 → 𝑋 ≈ 1o ) ) |
| 57 | 20 56 | impbid | ⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o ↔ 𝑈 = 𝑍 ) ) |