This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | |- B = ( Base ` R ) |
|
| 0ring.0 | |- .0. = ( 0g ` R ) |
||
| 0ring01eq.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | 0ring01eqbi | |- ( R e. Ring -> ( B ~~ 1o <-> .1. = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | |- B = ( Base ` R ) |
|
| 2 | 0ring.0 | |- .0. = ( 0g ` R ) |
|
| 3 | 0ring01eq.1 | |- .1. = ( 1r ` R ) |
|
| 4 | 1 | fvexi | |- B e. _V |
| 5 | hashen1 | |- ( B e. _V -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) |
|
| 6 | 4 5 | mp1i | |- ( R e. Ring -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) |
| 7 | 1 2 3 | 0ring01eq | |- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) |
| 8 | 7 | eqcomd | |- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .1. = .0. ) |
| 9 | 8 | ex | |- ( R e. Ring -> ( ( # ` B ) = 1 -> .1. = .0. ) ) |
| 10 | eqcom | |- ( .1. = .0. <-> .0. = .1. ) |
|
| 11 | 1 2 3 | 01eq0ring | |- ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |
| 12 | fveq2 | |- ( B = { .0. } -> ( # ` B ) = ( # ` { .0. } ) ) |
|
| 13 | 2 | fvexi | |- .0. e. _V |
| 14 | hashsng | |- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
|
| 15 | 13 14 | mp1i | |- ( B = { .0. } -> ( # ` { .0. } ) = 1 ) |
| 16 | 12 15 | eqtrd | |- ( B = { .0. } -> ( # ` B ) = 1 ) |
| 17 | 11 16 | syl | |- ( ( R e. Ring /\ .0. = .1. ) -> ( # ` B ) = 1 ) |
| 18 | 17 | ex | |- ( R e. Ring -> ( .0. = .1. -> ( # ` B ) = 1 ) ) |
| 19 | 10 18 | biimtrid | |- ( R e. Ring -> ( .1. = .0. -> ( # ` B ) = 1 ) ) |
| 20 | 9 19 | impbid | |- ( R e. Ring -> ( ( # ` B ) = 1 <-> .1. = .0. ) ) |
| 21 | 6 20 | bitr3d | |- ( R e. Ring -> ( B ~~ 1o <-> .1. = .0. ) ) |