This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A right ideal (which is a left ideal over the opposite ring) containing the zero element is closed under right-multiplication by elements of the full non-unital ring. (Contributed by AV, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlmcl.z | |- .0. = ( 0g ` R ) |
|
| rnglidlmcl.b | |- B = ( Base ` R ) |
||
| rnglidlmcl.t | |- .x. = ( .r ` R ) |
||
| rngridlmcl.u | |- U = ( LIdeal ` ( oppR ` R ) ) |
||
| Assertion | rngridlmcl | |- ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( Y .x. X ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlmcl.z | |- .0. = ( 0g ` R ) |
|
| 2 | rnglidlmcl.b | |- B = ( Base ` R ) |
|
| 3 | rnglidlmcl.t | |- .x. = ( .r ` R ) |
|
| 4 | rngridlmcl.u | |- U = ( LIdeal ` ( oppR ` R ) ) |
|
| 5 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 6 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 7 | 2 3 5 6 | opprmul | |- ( X ( .r ` ( oppR ` R ) ) Y ) = ( Y .x. X ) |
| 8 | 5 | opprrng | |- ( R e. Rng -> ( oppR ` R ) e. Rng ) |
| 9 | id | |- ( I e. U -> I e. U ) |
|
| 10 | 1 | eleq1i | |- ( .0. e. I <-> ( 0g ` R ) e. I ) |
| 11 | 10 | biimpi | |- ( .0. e. I -> ( 0g ` R ) e. I ) |
| 12 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 13 | 5 12 | oppr0 | |- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
| 14 | 5 2 | opprbas | |- B = ( Base ` ( oppR ` R ) ) |
| 15 | 13 14 6 4 | rnglidlmcl | |- ( ( ( ( oppR ` R ) e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X ( .r ` ( oppR ` R ) ) Y ) e. I ) |
| 16 | 8 9 11 15 | syl3anl | |- ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X ( .r ` ( oppR ` R ) ) Y ) e. I ) |
| 17 | 7 16 | eqeltrrid | |- ( ( ( R e. Rng /\ I e. U /\ .0. e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( Y .x. X ) e. I ) |