This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcof1o | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> ( F : A -1-1-onto-> B /\ `' F = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> F : A --> B ) |
|
| 2 | simplr | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> G : B --> A ) |
|
| 3 | simprr | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> ( G o. F ) = ( _I |` A ) ) |
|
| 4 | simprl | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> ( F o. G ) = ( _I |` B ) ) |
|
| 5 | 1 2 3 4 | fcof1od | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> F : A -1-1-onto-> B ) |
| 6 | 1 2 3 4 | 2fcoidinvd | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> `' F = G ) |
| 7 | 5 6 | jca | |- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> ( F : A -1-1-onto-> B /\ `' F = G ) ) |