This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 12-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf1o.b | |- B = ( Base ` R ) |
|
| rhmf1o.c | |- C = ( Base ` S ) |
||
| Assertion | isrim | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf1o.b | |- B = ( Base ` R ) |
|
| 2 | rhmf1o.c | |- C = ( Base ` S ) |
|
| 3 | isrim0 | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) ) |
|
| 4 | 1 2 | rhmf1o | |- ( F e. ( R RingHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S RingHom R ) ) ) |
| 5 | 4 | bicomd | |- ( F e. ( R RingHom S ) -> ( `' F e. ( S RingHom R ) <-> F : B -1-1-onto-> C ) ) |
| 6 | 5 | pm5.32i | |- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) <-> ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) ) |
| 7 | 3 6 | bitri | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) ) |