This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 . (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isrim0 | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rimrcl | |- ( F e. ( R RingIso S ) -> ( R e. _V /\ S e. _V ) ) |
|
| 2 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 3 | 2 | elexd | |- ( F e. ( R RingHom S ) -> R e. _V ) |
| 4 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 5 | 4 | elexd | |- ( F e. ( R RingHom S ) -> S e. _V ) |
| 6 | 3 5 | jca | |- ( F e. ( R RingHom S ) -> ( R e. _V /\ S e. _V ) ) |
| 7 | 6 | adantr | |- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) -> ( R e. _V /\ S e. _V ) ) |
| 8 | df-rim | |- RingIso = ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) |
|
| 9 | 8 | a1i | |- ( ( R e. _V /\ S e. _V ) -> RingIso = ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) ) |
| 10 | oveq12 | |- ( ( r = R /\ s = S ) -> ( r RingHom s ) = ( R RingHom S ) ) |
|
| 11 | 10 | adantl | |- ( ( ( R e. _V /\ S e. _V ) /\ ( r = R /\ s = S ) ) -> ( r RingHom s ) = ( R RingHom S ) ) |
| 12 | oveq12 | |- ( ( s = S /\ r = R ) -> ( s RingHom r ) = ( S RingHom R ) ) |
|
| 13 | 12 | ancoms | |- ( ( r = R /\ s = S ) -> ( s RingHom r ) = ( S RingHom R ) ) |
| 14 | 13 | adantl | |- ( ( ( R e. _V /\ S e. _V ) /\ ( r = R /\ s = S ) ) -> ( s RingHom r ) = ( S RingHom R ) ) |
| 15 | 14 | eleq2d | |- ( ( ( R e. _V /\ S e. _V ) /\ ( r = R /\ s = S ) ) -> ( `' f e. ( s RingHom r ) <-> `' f e. ( S RingHom R ) ) ) |
| 16 | 11 15 | rabeqbidv | |- ( ( ( R e. _V /\ S e. _V ) /\ ( r = R /\ s = S ) ) -> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } = { f e. ( R RingHom S ) | `' f e. ( S RingHom R ) } ) |
| 17 | simpl | |- ( ( R e. _V /\ S e. _V ) -> R e. _V ) |
|
| 18 | simpr | |- ( ( R e. _V /\ S e. _V ) -> S e. _V ) |
|
| 19 | ovex | |- ( R RingHom S ) e. _V |
|
| 20 | 19 | rabex | |- { f e. ( R RingHom S ) | `' f e. ( S RingHom R ) } e. _V |
| 21 | 20 | a1i | |- ( ( R e. _V /\ S e. _V ) -> { f e. ( R RingHom S ) | `' f e. ( S RingHom R ) } e. _V ) |
| 22 | 9 16 17 18 21 | ovmpod | |- ( ( R e. _V /\ S e. _V ) -> ( R RingIso S ) = { f e. ( R RingHom S ) | `' f e. ( S RingHom R ) } ) |
| 23 | 22 | eleq2d | |- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RingIso S ) <-> F e. { f e. ( R RingHom S ) | `' f e. ( S RingHom R ) } ) ) |
| 24 | cnveq | |- ( f = F -> `' f = `' F ) |
|
| 25 | 24 | eleq1d | |- ( f = F -> ( `' f e. ( S RingHom R ) <-> `' F e. ( S RingHom R ) ) ) |
| 26 | 25 | elrab | |- ( F e. { f e. ( R RingHom S ) | `' f e. ( S RingHom R ) } <-> ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) ) |
| 27 | 23 26 | bitrdi | |- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) ) ) |
| 28 | 1 7 27 | pm5.21nii | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) ) |