This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmisrnghm | |- ( F e. ( R RingHom S ) -> F e. ( R RngHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 2 | ringrng | |- ( S e. Ring -> S e. Rng ) |
|
| 3 | 1 2 | anim12i | |- ( ( R e. Ring /\ S e. Ring ) -> ( R e. Rng /\ S e. Rng ) ) |
| 4 | mhmismgmhm | |- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) -> F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) |
|
| 5 | 4 | anim2i | |- ( ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |
| 6 | 3 5 | anim12i | |- ( ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) -> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
| 7 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 8 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 9 | 7 8 | isrhm | |- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 10 | 7 8 | isrnghmmul | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
| 11 | 6 9 10 | 3imtr4i | |- ( F e. ( R RingHom S ) -> F e. ( R RngHom S ) ) |