This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of two non-unital rings to the non-unital ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnghmfn | |- RngHom Fn ( Rng X. Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rnghm | |- RngHom = ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) |
|
| 2 | ovex | |- ( w ^m v ) e. _V |
|
| 3 | 2 | rabex | |- { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } e. _V |
| 4 | 3 | csbex | |- [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } e. _V |
| 5 | 4 | csbex | |- [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } e. _V |
| 6 | 1 5 | fnmpoi | |- RngHom Fn ( Rng X. Rng ) |