This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rfcnpre4.1 | |- F/_ t F |
|
| rfcnpre4.2 | |- K = ( topGen ` ran (,) ) |
||
| rfcnpre4.3 | |- T = U. J |
||
| rfcnpre4.4 | |- A = { t e. T | ( F ` t ) <_ B } |
||
| rfcnpre4.5 | |- ( ph -> B e. RR ) |
||
| rfcnpre4.6 | |- ( ph -> F e. ( J Cn K ) ) |
||
| Assertion | rfcnpre4 | |- ( ph -> A e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre4.1 | |- F/_ t F |
|
| 2 | rfcnpre4.2 | |- K = ( topGen ` ran (,) ) |
|
| 3 | rfcnpre4.3 | |- T = U. J |
|
| 4 | rfcnpre4.4 | |- A = { t e. T | ( F ` t ) <_ B } |
|
| 5 | rfcnpre4.5 | |- ( ph -> B e. RR ) |
|
| 6 | rfcnpre4.6 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 7 | eqid | |- ( J Cn K ) = ( J Cn K ) |
|
| 8 | 2 3 7 6 | fcnre | |- ( ph -> F : T --> RR ) |
| 9 | ffn | |- ( F : T --> RR -> F Fn T ) |
|
| 10 | elpreima | |- ( F Fn T -> ( s e. ( `' F " ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) e. ( -oo (,] B ) ) ) ) |
|
| 11 | 8 9 10 | 3syl | |- ( ph -> ( s e. ( `' F " ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) e. ( -oo (,] B ) ) ) ) |
| 12 | mnfxr | |- -oo e. RR* |
|
| 13 | 5 | rexrd | |- ( ph -> B e. RR* ) |
| 14 | 13 | adantr | |- ( ( ph /\ s e. T ) -> B e. RR* ) |
| 15 | elioc1 | |- ( ( -oo e. RR* /\ B e. RR* ) -> ( ( F ` s ) e. ( -oo (,] B ) <-> ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) ) |
|
| 16 | 12 14 15 | sylancr | |- ( ( ph /\ s e. T ) -> ( ( F ` s ) e. ( -oo (,] B ) <-> ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) ) |
| 17 | simpr3 | |- ( ( ( ph /\ s e. T ) /\ ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) -> ( F ` s ) <_ B ) |
|
| 18 | 8 | ffvelcdmda | |- ( ( ph /\ s e. T ) -> ( F ` s ) e. RR ) |
| 19 | 18 | rexrd | |- ( ( ph /\ s e. T ) -> ( F ` s ) e. RR* ) |
| 20 | 19 | adantr | |- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( F ` s ) e. RR* ) |
| 21 | 18 | adantr | |- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( F ` s ) e. RR ) |
| 22 | mnflt | |- ( ( F ` s ) e. RR -> -oo < ( F ` s ) ) |
|
| 23 | 21 22 | syl | |- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> -oo < ( F ` s ) ) |
| 24 | simpr | |- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( F ` s ) <_ B ) |
|
| 25 | 20 23 24 | 3jca | |- ( ( ( ph /\ s e. T ) /\ ( F ` s ) <_ B ) -> ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) ) |
| 26 | 17 25 | impbida | |- ( ( ph /\ s e. T ) -> ( ( ( F ` s ) e. RR* /\ -oo < ( F ` s ) /\ ( F ` s ) <_ B ) <-> ( F ` s ) <_ B ) ) |
| 27 | 16 26 | bitrd | |- ( ( ph /\ s e. T ) -> ( ( F ` s ) e. ( -oo (,] B ) <-> ( F ` s ) <_ B ) ) |
| 28 | 27 | pm5.32da | |- ( ph -> ( ( s e. T /\ ( F ` s ) e. ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) <_ B ) ) ) |
| 29 | 11 28 | bitrd | |- ( ph -> ( s e. ( `' F " ( -oo (,] B ) ) <-> ( s e. T /\ ( F ` s ) <_ B ) ) ) |
| 30 | nfcv | |- F/_ t s |
|
| 31 | nfcv | |- F/_ t T |
|
| 32 | 1 30 | nffv | |- F/_ t ( F ` s ) |
| 33 | nfcv | |- F/_ t <_ |
|
| 34 | nfcv | |- F/_ t B |
|
| 35 | 32 33 34 | nfbr | |- F/ t ( F ` s ) <_ B |
| 36 | fveq2 | |- ( t = s -> ( F ` t ) = ( F ` s ) ) |
|
| 37 | 36 | breq1d | |- ( t = s -> ( ( F ` t ) <_ B <-> ( F ` s ) <_ B ) ) |
| 38 | 30 31 35 37 | elrabf | |- ( s e. { t e. T | ( F ` t ) <_ B } <-> ( s e. T /\ ( F ` s ) <_ B ) ) |
| 39 | 29 38 | bitr4di | |- ( ph -> ( s e. ( `' F " ( -oo (,] B ) ) <-> s e. { t e. T | ( F ` t ) <_ B } ) ) |
| 40 | 39 | eqrdv | |- ( ph -> ( `' F " ( -oo (,] B ) ) = { t e. T | ( F ` t ) <_ B } ) |
| 41 | 40 4 | eqtr4di | |- ( ph -> ( `' F " ( -oo (,] B ) ) = A ) |
| 42 | iocmnfcld | |- ( B e. RR -> ( -oo (,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
|
| 43 | 5 42 | syl | |- ( ph -> ( -oo (,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 44 | 2 | fveq2i | |- ( Clsd ` K ) = ( Clsd ` ( topGen ` ran (,) ) ) |
| 45 | 43 44 | eleqtrrdi | |- ( ph -> ( -oo (,] B ) e. ( Clsd ` K ) ) |
| 46 | cnclima | |- ( ( F e. ( J Cn K ) /\ ( -oo (,] B ) e. ( Clsd ` K ) ) -> ( `' F " ( -oo (,] B ) ) e. ( Clsd ` J ) ) |
|
| 47 | 6 45 46 | syl2anc | |- ( ph -> ( `' F " ( -oo (,] B ) ) e. ( Clsd ` J ) ) |
| 48 | 41 47 | eqeltrrd | |- ( ph -> A e. ( Clsd ` J ) ) |