This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcnre.1 | |- K = ( topGen ` ran (,) ) |
|
| fcnre.3 | |- T = U. J |
||
| sfcnre.5 | |- C = ( J Cn K ) |
||
| fcnre.6 | |- ( ph -> F e. C ) |
||
| Assertion | fcnre | |- ( ph -> F : T --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcnre.1 | |- K = ( topGen ` ran (,) ) |
|
| 2 | fcnre.3 | |- T = U. J |
|
| 3 | sfcnre.5 | |- C = ( J Cn K ) |
|
| 4 | fcnre.6 | |- ( ph -> F e. C ) |
|
| 5 | 4 3 | eleqtrdi | |- ( ph -> F e. ( J Cn K ) ) |
| 6 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 7 | 5 6 | syl | |- ( ph -> J e. Top ) |
| 8 | 2 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` T ) ) |
| 9 | 7 8 | sylib | |- ( ph -> J e. ( TopOn ` T ) ) |
| 10 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 11 | 1 10 | eqeltri | |- K e. ( TopOn ` RR ) |
| 12 | 11 | a1i | |- ( ph -> K e. ( TopOn ` RR ) ) |
| 13 | cnf2 | |- ( ( J e. ( TopOn ` T ) /\ K e. ( TopOn ` RR ) /\ F e. ( J Cn K ) ) -> F : T --> RR ) |
|
| 14 | 9 12 5 13 | syl3anc | |- ( ph -> F : T --> RR ) |