This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rfcnpre4.1 | ⊢ Ⅎ 𝑡 𝐹 | |
| rfcnpre4.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| rfcnpre4.3 | ⊢ 𝑇 = ∪ 𝐽 | ||
| rfcnpre4.4 | ⊢ 𝐴 = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ 𝐵 } | ||
| rfcnpre4.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| rfcnpre4.6 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | rfcnpre4 | ⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre4.1 | ⊢ Ⅎ 𝑡 𝐹 | |
| 2 | rfcnpre4.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 3 | rfcnpre4.3 | ⊢ 𝑇 = ∪ 𝐽 | |
| 4 | rfcnpre4.4 | ⊢ 𝐴 = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ 𝐵 } | |
| 5 | rfcnpre4.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 6 | rfcnpre4.6 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 7 | eqid | ⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 ) | |
| 8 | 2 3 7 6 | fcnre | ⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
| 9 | ffn | ⊢ ( 𝐹 : 𝑇 ⟶ ℝ → 𝐹 Fn 𝑇 ) | |
| 10 | elpreima | ⊢ ( 𝐹 Fn 𝑇 → ( 𝑠 ∈ ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) ↔ ( 𝑠 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑠 ) ∈ ( -∞ (,] 𝐵 ) ) ) ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝜑 → ( 𝑠 ∈ ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) ↔ ( 𝑠 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑠 ) ∈ ( -∞ (,] 𝐵 ) ) ) ) |
| 12 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 13 | 5 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → 𝐵 ∈ ℝ* ) |
| 15 | elioc1 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑠 ) ∈ ( -∞ (,] 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ* ∧ -∞ < ( 𝐹 ‘ 𝑠 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) ) | |
| 16 | 12 14 15 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑠 ) ∈ ( -∞ (,] 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ* ∧ -∞ < ( 𝐹 ‘ 𝑠 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) ) |
| 17 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ* ∧ -∞ < ( 𝐹 ‘ 𝑠 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) → ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) | |
| 18 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
| 19 | 18 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ* ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ* ) |
| 21 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
| 22 | mnflt | ⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ → -∞ < ( 𝐹 ‘ 𝑠 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) → -∞ < ( 𝐹 ‘ 𝑠 ) ) |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) → ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) | |
| 25 | 20 23 24 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) → ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ* ∧ -∞ < ( 𝐹 ‘ 𝑠 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) |
| 26 | 17 25 | impbida | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ* ∧ -∞ < ( 𝐹 ‘ 𝑠 ) ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ↔ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) |
| 27 | 16 26 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑠 ) ∈ ( -∞ (,] 𝐵 ) ↔ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) |
| 28 | 27 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑠 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑠 ) ∈ ( -∞ (,] 𝐵 ) ) ↔ ( 𝑠 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) ) |
| 29 | 11 28 | bitrd | ⊢ ( 𝜑 → ( 𝑠 ∈ ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) ↔ ( 𝑠 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) ) |
| 30 | nfcv | ⊢ Ⅎ 𝑡 𝑠 | |
| 31 | nfcv | ⊢ Ⅎ 𝑡 𝑇 | |
| 32 | 1 30 | nffv | ⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑠 ) |
| 33 | nfcv | ⊢ Ⅎ 𝑡 ≤ | |
| 34 | nfcv | ⊢ Ⅎ 𝑡 𝐵 | |
| 35 | 32 33 34 | nfbr | ⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 |
| 36 | fveq2 | ⊢ ( 𝑡 = 𝑠 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑠 ) ) | |
| 37 | 36 | breq1d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝐹 ‘ 𝑡 ) ≤ 𝐵 ↔ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) |
| 38 | 30 31 35 37 | elrabf | ⊢ ( 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ 𝐵 } ↔ ( 𝑠 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑠 ) ≤ 𝐵 ) ) |
| 39 | 29 38 | bitr4di | ⊢ ( 𝜑 → ( 𝑠 ∈ ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) ↔ 𝑠 ∈ { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ 𝐵 } ) ) |
| 40 | 39 | eqrdv | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) = { 𝑡 ∈ 𝑇 ∣ ( 𝐹 ‘ 𝑡 ) ≤ 𝐵 } ) |
| 41 | 40 4 | eqtr4di | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) = 𝐴 ) |
| 42 | iocmnfcld | ⊢ ( 𝐵 ∈ ℝ → ( -∞ (,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) | |
| 43 | 5 42 | syl | ⊢ ( 𝜑 → ( -∞ (,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 44 | 2 | fveq2i | ⊢ ( Clsd ‘ 𝐾 ) = ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 45 | 43 44 | eleqtrrdi | ⊢ ( 𝜑 → ( -∞ (,] 𝐵 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 46 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( -∞ (,] 𝐵 ) ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 47 | 6 45 46 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 48 | 41 47 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |