This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncmpmax.1 | |- T = U. J |
|
| cncmpmax.2 | |- K = ( topGen ` ran (,) ) |
||
| cncmpmax.3 | |- ( ph -> J e. Comp ) |
||
| cncmpmax.4 | |- ( ph -> F e. ( J Cn K ) ) |
||
| cncmpmax.5 | |- ( ph -> T =/= (/) ) |
||
| Assertion | cncmpmax | |- ( ph -> ( sup ( ran F , RR , < ) e. ran F /\ sup ( ran F , RR , < ) e. RR /\ A. t e. T ( F ` t ) <_ sup ( ran F , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncmpmax.1 | |- T = U. J |
|
| 2 | cncmpmax.2 | |- K = ( topGen ` ran (,) ) |
|
| 3 | cncmpmax.3 | |- ( ph -> J e. Comp ) |
|
| 4 | cncmpmax.4 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 5 | cncmpmax.5 | |- ( ph -> T =/= (/) ) |
|
| 6 | 1 2 3 4 5 | evth | |- ( ph -> E. x e. T A. t e. T ( F ` t ) <_ ( F ` x ) ) |
| 7 | eqid | |- ( J Cn K ) = ( J Cn K ) |
|
| 8 | 2 1 7 4 | fcnre | |- ( ph -> F : T --> RR ) |
| 9 | 8 | frnd | |- ( ph -> ran F C_ RR ) |
| 10 | 9 | adantr | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> ran F C_ RR ) |
| 11 | 8 | ffund | |- ( ph -> Fun F ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. T ) -> Fun F ) |
| 13 | simpr | |- ( ( ph /\ x e. T ) -> x e. T ) |
|
| 14 | 8 | adantr | |- ( ( ph /\ x e. T ) -> F : T --> RR ) |
| 15 | 14 | fdmd | |- ( ( ph /\ x e. T ) -> dom F = T ) |
| 16 | 13 15 | eleqtrrd | |- ( ( ph /\ x e. T ) -> x e. dom F ) |
| 17 | fvelrn | |- ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) |
|
| 18 | 12 16 17 | syl2anc | |- ( ( ph /\ x e. T ) -> ( F ` x ) e. ran F ) |
| 19 | 18 | adantrr | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> ( F ` x ) e. ran F ) |
| 20 | ffn | |- ( F : T --> RR -> F Fn T ) |
|
| 21 | fvelrnb | |- ( F Fn T -> ( y e. ran F <-> E. s e. T ( F ` s ) = y ) ) |
|
| 22 | 8 20 21 | 3syl | |- ( ph -> ( y e. ran F <-> E. s e. T ( F ` s ) = y ) ) |
| 23 | 22 | biimpa | |- ( ( ph /\ y e. ran F ) -> E. s e. T ( F ` s ) = y ) |
| 24 | df-rex | |- ( E. s e. T ( F ` s ) = y <-> E. s ( s e. T /\ ( F ` s ) = y ) ) |
|
| 25 | 23 24 | sylib | |- ( ( ph /\ y e. ran F ) -> E. s ( s e. T /\ ( F ` s ) = y ) ) |
| 26 | 25 | adantlr | |- ( ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) /\ y e. ran F ) -> E. s ( s e. T /\ ( F ` s ) = y ) ) |
| 27 | simprr | |- ( ( ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) /\ y e. ran F ) /\ ( s e. T /\ ( F ` s ) = y ) ) -> ( F ` s ) = y ) |
|
| 28 | simpllr | |- ( ( ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) /\ y e. ran F ) /\ ( s e. T /\ ( F ` s ) = y ) ) -> A. t e. T ( F ` t ) <_ ( F ` x ) ) |
|
| 29 | simprl | |- ( ( ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) /\ y e. ran F ) /\ ( s e. T /\ ( F ` s ) = y ) ) -> s e. T ) |
|
| 30 | fveq2 | |- ( t = s -> ( F ` t ) = ( F ` s ) ) |
|
| 31 | 30 | breq1d | |- ( t = s -> ( ( F ` t ) <_ ( F ` x ) <-> ( F ` s ) <_ ( F ` x ) ) ) |
| 32 | 31 | rspccva | |- ( ( A. t e. T ( F ` t ) <_ ( F ` x ) /\ s e. T ) -> ( F ` s ) <_ ( F ` x ) ) |
| 33 | 28 29 32 | syl2anc | |- ( ( ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) /\ y e. ran F ) /\ ( s e. T /\ ( F ` s ) = y ) ) -> ( F ` s ) <_ ( F ` x ) ) |
| 34 | 27 33 | eqbrtrrd | |- ( ( ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) /\ y e. ran F ) /\ ( s e. T /\ ( F ` s ) = y ) ) -> y <_ ( F ` x ) ) |
| 35 | 26 34 | exlimddv | |- ( ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) /\ y e. ran F ) -> y <_ ( F ` x ) ) |
| 36 | 35 | ralrimiva | |- ( ( ph /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) -> A. y e. ran F y <_ ( F ` x ) ) |
| 37 | 36 | adantrl | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> A. y e. ran F y <_ ( F ` x ) ) |
| 38 | ubelsupr | |- ( ( ran F C_ RR /\ ( F ` x ) e. ran F /\ A. y e. ran F y <_ ( F ` x ) ) -> ( F ` x ) = sup ( ran F , RR , < ) ) |
|
| 39 | 10 19 37 38 | syl3anc | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> ( F ` x ) = sup ( ran F , RR , < ) ) |
| 40 | 39 | eqcomd | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> sup ( ran F , RR , < ) = ( F ` x ) ) |
| 41 | 40 19 | eqeltrd | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> sup ( ran F , RR , < ) e. ran F ) |
| 42 | 10 41 | sseldd | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> sup ( ran F , RR , < ) e. RR ) |
| 43 | simplrr | |- ( ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) /\ s e. T ) -> A. t e. T ( F ` t ) <_ ( F ` x ) ) |
|
| 44 | 43 32 | sylancom | |- ( ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) /\ s e. T ) -> ( F ` s ) <_ ( F ` x ) ) |
| 45 | 40 | adantr | |- ( ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) /\ s e. T ) -> sup ( ran F , RR , < ) = ( F ` x ) ) |
| 46 | 44 45 | breqtrrd | |- ( ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) /\ s e. T ) -> ( F ` s ) <_ sup ( ran F , RR , < ) ) |
| 47 | 46 | ralrimiva | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> A. s e. T ( F ` s ) <_ sup ( ran F , RR , < ) ) |
| 48 | 30 | breq1d | |- ( t = s -> ( ( F ` t ) <_ sup ( ran F , RR , < ) <-> ( F ` s ) <_ sup ( ran F , RR , < ) ) ) |
| 49 | 48 | cbvralvw | |- ( A. t e. T ( F ` t ) <_ sup ( ran F , RR , < ) <-> A. s e. T ( F ` s ) <_ sup ( ran F , RR , < ) ) |
| 50 | 47 49 | sylibr | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> A. t e. T ( F ` t ) <_ sup ( ran F , RR , < ) ) |
| 51 | 41 42 50 | 3jca | |- ( ( ph /\ ( x e. T /\ A. t e. T ( F ` t ) <_ ( F ` x ) ) ) -> ( sup ( ran F , RR , < ) e. ran F /\ sup ( ran F , RR , < ) e. RR /\ A. t e. T ( F ` t ) <_ sup ( ran F , RR , < ) ) ) |
| 52 | 6 51 | rexlimddv | |- ( ph -> ( sup ( ran F , RR , < ) e. ran F /\ sup ( ran F , RR , < ) e. RR /\ A. t e. T ( F ` t ) <_ sup ( ran F , RR , < ) ) ) |