This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restutop | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( unifTop ` U ) |`t A ) C_ ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> ( U e. ( UnifOn ` X ) /\ A C_ X ) ) |
|
| 2 | fvexd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( unifTop ` U ) e. _V ) |
|
| 3 | elfvex | |- ( U e. ( UnifOn ` X ) -> X e. _V ) |
|
| 4 | 3 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> X e. _V ) |
| 5 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A C_ X ) |
|
| 6 | 4 5 | ssexd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A e. _V ) |
| 7 | elrest | |- ( ( ( unifTop ` U ) e. _V /\ A e. _V ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
|
| 8 | 2 6 7 | syl2anc | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
| 9 | 8 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
| 10 | inss2 | |- ( a i^i A ) C_ A |
|
| 11 | sseq1 | |- ( b = ( a i^i A ) -> ( b C_ A <-> ( a i^i A ) C_ A ) ) |
|
| 12 | 10 11 | mpbiri | |- ( b = ( a i^i A ) -> b C_ A ) |
| 13 | 12 | rexlimivw | |- ( E. a e. ( unifTop ` U ) b = ( a i^i A ) -> b C_ A ) |
| 14 | 9 13 | syl | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> b C_ A ) |
| 15 | simp-5l | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> U e. ( UnifOn ` X ) ) |
|
| 16 | 15 | ad2antrr | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> U e. ( UnifOn ` X ) ) |
| 17 | 6 | ad6antr | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> A e. _V ) |
| 18 | 17 17 | xpexd | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( A X. A ) e. _V ) |
| 19 | simplr | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> u e. U ) |
|
| 20 | elrestr | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V /\ u e. U ) -> ( u i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
|
| 21 | 16 18 19 20 | syl3anc | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( u i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 22 | inss1 | |- ( u i^i ( A X. A ) ) C_ u |
|
| 23 | imass1 | |- ( ( u i^i ( A X. A ) ) C_ u -> ( ( u i^i ( A X. A ) ) " { x } ) C_ ( u " { x } ) ) |
|
| 24 | 22 23 | ax-mp | |- ( ( u i^i ( A X. A ) ) " { x } ) C_ ( u " { x } ) |
| 25 | sstr | |- ( ( ( ( u i^i ( A X. A ) ) " { x } ) C_ ( u " { x } ) /\ ( u " { x } ) C_ a ) -> ( ( u i^i ( A X. A ) ) " { x } ) C_ a ) |
|
| 26 | 24 25 | mpan | |- ( ( u " { x } ) C_ a -> ( ( u i^i ( A X. A ) ) " { x } ) C_ a ) |
| 27 | imassrn | |- ( ( u i^i ( A X. A ) ) " { x } ) C_ ran ( u i^i ( A X. A ) ) |
|
| 28 | rnin | |- ran ( u i^i ( A X. A ) ) C_ ( ran u i^i ran ( A X. A ) ) |
|
| 29 | 27 28 | sstri | |- ( ( u i^i ( A X. A ) ) " { x } ) C_ ( ran u i^i ran ( A X. A ) ) |
| 30 | inss2 | |- ( ran u i^i ran ( A X. A ) ) C_ ran ( A X. A ) |
|
| 31 | 29 30 | sstri | |- ( ( u i^i ( A X. A ) ) " { x } ) C_ ran ( A X. A ) |
| 32 | rnxpid | |- ran ( A X. A ) = A |
|
| 33 | 31 32 | sseqtri | |- ( ( u i^i ( A X. A ) ) " { x } ) C_ A |
| 34 | 33 | a1i | |- ( ( u " { x } ) C_ a -> ( ( u i^i ( A X. A ) ) " { x } ) C_ A ) |
| 35 | 26 34 | ssind | |- ( ( u " { x } ) C_ a -> ( ( u i^i ( A X. A ) ) " { x } ) C_ ( a i^i A ) ) |
| 36 | 35 | adantl | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( ( u i^i ( A X. A ) ) " { x } ) C_ ( a i^i A ) ) |
| 37 | simpllr | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> b = ( a i^i A ) ) |
|
| 38 | 36 37 | sseqtrrd | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( ( u i^i ( A X. A ) ) " { x } ) C_ b ) |
| 39 | imaeq1 | |- ( v = ( u i^i ( A X. A ) ) -> ( v " { x } ) = ( ( u i^i ( A X. A ) ) " { x } ) ) |
|
| 40 | 39 | sseq1d | |- ( v = ( u i^i ( A X. A ) ) -> ( ( v " { x } ) C_ b <-> ( ( u i^i ( A X. A ) ) " { x } ) C_ b ) ) |
| 41 | 40 | rspcev | |- ( ( ( u i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) /\ ( ( u i^i ( A X. A ) ) " { x } ) C_ b ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
| 42 | 21 38 41 | syl2anc | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
| 43 | simplr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> a e. ( unifTop ` U ) ) |
|
| 44 | simpllr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> x e. b ) |
|
| 45 | simpr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> b = ( a i^i A ) ) |
|
| 46 | 44 45 | eleqtrd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> x e. ( a i^i A ) ) |
| 47 | 46 | elin1d | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> x e. a ) |
| 48 | elutop | |- ( U e. ( UnifOn ` X ) -> ( a e. ( unifTop ` U ) <-> ( a C_ X /\ A. x e. a E. u e. U ( u " { x } ) C_ a ) ) ) |
|
| 49 | 48 | simplbda | |- ( ( U e. ( UnifOn ` X ) /\ a e. ( unifTop ` U ) ) -> A. x e. a E. u e. U ( u " { x } ) C_ a ) |
| 50 | 49 | r19.21bi | |- ( ( ( U e. ( UnifOn ` X ) /\ a e. ( unifTop ` U ) ) /\ x e. a ) -> E. u e. U ( u " { x } ) C_ a ) |
| 51 | 15 43 47 50 | syl21anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> E. u e. U ( u " { x } ) C_ a ) |
| 52 | 42 51 | r19.29a | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
| 53 | 9 | adantr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
| 54 | 52 53 | r19.29a | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
| 55 | 54 | ralrimiva | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
| 56 | trust | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
|
| 57 | elutop | |- ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) ) ) |
|
| 58 | 56 57 | syl | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) ) ) |
| 59 | 58 | biimpar | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ ( b C_ A /\ A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) ) -> b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
| 60 | 1 14 55 59 | syl12anc | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
| 61 | 60 | ex | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( b e. ( ( unifTop ` U ) |`t A ) -> b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) ) |
| 62 | 61 | ssrdv | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( unifTop ` U ) |`t A ) C_ ( unifTop ` ( U |`t ( A X. A ) ) ) ) |