This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difin2 | |- ( A C_ C -> ( A \ B ) = ( ( C \ B ) i^i A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ C -> ( x e. A -> x e. C ) ) |
|
| 2 | 1 | pm4.71d | |- ( A C_ C -> ( x e. A <-> ( x e. A /\ x e. C ) ) ) |
| 3 | 2 | anbi1d | |- ( A C_ C -> ( ( x e. A /\ -. x e. B ) <-> ( ( x e. A /\ x e. C ) /\ -. x e. B ) ) ) |
| 4 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 5 | ancom | |- ( ( ( x e. C /\ -. x e. B ) /\ x e. A ) <-> ( x e. A /\ ( x e. C /\ -. x e. B ) ) ) |
|
| 6 | elin | |- ( x e. ( ( C \ B ) i^i A ) <-> ( x e. ( C \ B ) /\ x e. A ) ) |
|
| 7 | eldif | |- ( x e. ( C \ B ) <-> ( x e. C /\ -. x e. B ) ) |
|
| 8 | 6 7 | bianbi | |- ( x e. ( ( C \ B ) i^i A ) <-> ( ( x e. C /\ -. x e. B ) /\ x e. A ) ) |
| 9 | anass | |- ( ( ( x e. A /\ x e. C ) /\ -. x e. B ) <-> ( x e. A /\ ( x e. C /\ -. x e. B ) ) ) |
|
| 10 | 5 8 9 | 3bitr4i | |- ( x e. ( ( C \ B ) i^i A ) <-> ( ( x e. A /\ x e. C ) /\ -. x e. B ) ) |
| 11 | 3 4 10 | 3bitr4g | |- ( A C_ C -> ( x e. ( A \ B ) <-> x e. ( ( C \ B ) i^i A ) ) ) |
| 12 | 11 | eqrdv | |- ( A C_ C -> ( A \ B ) = ( ( C \ B ) i^i A ) ) |