This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class S is a closed set". (Contributed by NM, 2-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | |- X = U. J |
|
| Assertion | iscld | |- ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | |- X = U. J |
|
| 2 | 1 | cldval | |- ( J e. Top -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } ) |
| 3 | 2 | eleq2d | |- ( J e. Top -> ( S e. ( Clsd ` J ) <-> S e. { x e. ~P X | ( X \ x ) e. J } ) ) |
| 4 | difeq2 | |- ( x = S -> ( X \ x ) = ( X \ S ) ) |
|
| 5 | 4 | eleq1d | |- ( x = S -> ( ( X \ x ) e. J <-> ( X \ S ) e. J ) ) |
| 6 | 5 | elrab | |- ( S e. { x e. ~P X | ( X \ x ) e. J } <-> ( S e. ~P X /\ ( X \ S ) e. J ) ) |
| 7 | 3 6 | bitrdi | |- ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S e. ~P X /\ ( X \ S ) e. J ) ) ) |
| 8 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 9 | elpw2g | |- ( X e. J -> ( S e. ~P X <-> S C_ X ) ) |
|
| 10 | 8 9 | syl | |- ( J e. Top -> ( S e. ~P X <-> S C_ X ) ) |
| 11 | 10 | anbi1d | |- ( J e. Top -> ( ( S e. ~P X /\ ( X \ S ) e. J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) ) |
| 12 | 7 11 | bitrd | |- ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) ) |