This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressust.x | |- X = ( Base ` W ) |
|
| ressust.t | |- T = ( UnifSt ` ( W |`s A ) ) |
||
| Assertion | ressust | |- ( ( W e. UnifSp /\ A C_ X ) -> T e. ( UnifOn ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressust.x | |- X = ( Base ` W ) |
|
| 2 | ressust.t | |- T = ( UnifSt ` ( W |`s A ) ) |
|
| 3 | 1 | fvexi | |- X e. _V |
| 4 | 3 | ssex | |- ( A C_ X -> A e. _V ) |
| 5 | 4 | adantl | |- ( ( W e. UnifSp /\ A C_ X ) -> A e. _V ) |
| 6 | ressuss | |- ( A e. _V -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( W e. UnifSp /\ A C_ X ) -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
| 8 | 2 7 | eqtrid | |- ( ( W e. UnifSp /\ A C_ X ) -> T = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
| 9 | eqid | |- ( UnifSt ` W ) = ( UnifSt ` W ) |
|
| 10 | eqid | |- ( TopOpen ` W ) = ( TopOpen ` W ) |
|
| 11 | 1 9 10 | isusp | |- ( W e. UnifSp <-> ( ( UnifSt ` W ) e. ( UnifOn ` X ) /\ ( TopOpen ` W ) = ( unifTop ` ( UnifSt ` W ) ) ) ) |
| 12 | 11 | simplbi | |- ( W e. UnifSp -> ( UnifSt ` W ) e. ( UnifOn ` X ) ) |
| 13 | trust | |- ( ( ( UnifSt ` W ) e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
|
| 14 | 12 13 | sylan | |- ( ( W e. UnifSp /\ A C_ X ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
| 15 | 8 14 | eqeltrd | |- ( ( W e. UnifSp /\ A C_ X ) -> T e. ( UnifOn ` A ) ) |