This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure on uniform space W . This proof uses a trick with fvprc to avoid requiring W to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ussval.1 | |- B = ( Base ` W ) |
|
| ussval.2 | |- U = ( UnifSet ` W ) |
||
| Assertion | ussval | |- ( U |`t ( B X. B ) ) = ( UnifSt ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.1 | |- B = ( Base ` W ) |
|
| 2 | ussval.2 | |- U = ( UnifSet ` W ) |
|
| 3 | 1 1 | xpeq12i | |- ( B X. B ) = ( ( Base ` W ) X. ( Base ` W ) ) |
| 4 | 2 3 | oveq12i | |- ( U |`t ( B X. B ) ) = ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) |
| 5 | fveq2 | |- ( w = W -> ( UnifSet ` w ) = ( UnifSet ` W ) ) |
|
| 6 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 7 | 6 | sqxpeqd | |- ( w = W -> ( ( Base ` w ) X. ( Base ` w ) ) = ( ( Base ` W ) X. ( Base ` W ) ) ) |
| 8 | 5 7 | oveq12d | |- ( w = W -> ( ( UnifSet ` w ) |`t ( ( Base ` w ) X. ( Base ` w ) ) ) = ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 9 | df-uss | |- UnifSt = ( w e. _V |-> ( ( UnifSet ` w ) |`t ( ( Base ` w ) X. ( Base ` w ) ) ) ) |
|
| 10 | ovex | |- ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( W e. _V -> ( UnifSt ` W ) = ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 12 | 4 11 | eqtr4id | |- ( W e. _V -> ( U |`t ( B X. B ) ) = ( UnifSt ` W ) ) |
| 13 | 0rest | |- ( (/) |`t ( B X. B ) ) = (/) |
|
| 14 | fvprc | |- ( -. W e. _V -> ( UnifSet ` W ) = (/) ) |
|
| 15 | 2 14 | eqtrid | |- ( -. W e. _V -> U = (/) ) |
| 16 | 15 | oveq1d | |- ( -. W e. _V -> ( U |`t ( B X. B ) ) = ( (/) |`t ( B X. B ) ) ) |
| 17 | fvprc | |- ( -. W e. _V -> ( UnifSt ` W ) = (/) ) |
|
| 18 | 13 16 17 | 3eqtr4a | |- ( -. W e. _V -> ( U |`t ( B X. B ) ) = ( UnifSt ` W ) ) |
| 19 | 12 18 | pm2.61i | |- ( U |`t ( B X. B ) ) = ( UnifSt ` W ) |