This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resinval | |- ( A e. RR -> ( sin ` A ) = ( Im ` ( exp ` ( _i x. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | cjmul | |- ( ( _i e. CC /\ A e. CC ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
|
| 4 | 1 2 3 | sylancr | |- ( A e. RR -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
| 5 | cji | |- ( * ` _i ) = -u _i |
|
| 6 | 5 | oveq1i | |- ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. ( * ` A ) ) |
| 7 | cjre | |- ( A e. RR -> ( * ` A ) = A ) |
|
| 8 | 7 | oveq2d | |- ( A e. RR -> ( -u _i x. ( * ` A ) ) = ( -u _i x. A ) ) |
| 9 | 6 8 | eqtrid | |- ( A e. RR -> ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. A ) ) |
| 10 | 4 9 | eqtrd | |- ( A e. RR -> ( * ` ( _i x. A ) ) = ( -u _i x. A ) ) |
| 11 | 10 | fveq2d | |- ( A e. RR -> ( exp ` ( * ` ( _i x. A ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 12 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 13 | 1 2 12 | sylancr | |- ( A e. RR -> ( _i x. A ) e. CC ) |
| 14 | efcj | |- ( ( _i x. A ) e. CC -> ( exp ` ( * ` ( _i x. A ) ) ) = ( * ` ( exp ` ( _i x. A ) ) ) ) |
|
| 15 | 13 14 | syl | |- ( A e. RR -> ( exp ` ( * ` ( _i x. A ) ) ) = ( * ` ( exp ` ( _i x. A ) ) ) ) |
| 16 | 11 15 | eqtr3d | |- ( A e. RR -> ( exp ` ( -u _i x. A ) ) = ( * ` ( exp ` ( _i x. A ) ) ) ) |
| 17 | 16 | oveq2d | |- ( A e. RR -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) ) |
| 18 | 17 | oveq1d | |- ( A e. RR -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
| 19 | sinval | |- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
|
| 20 | 2 19 | syl | |- ( A e. RR -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 21 | efcl | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
|
| 22 | imval2 | |- ( ( exp ` ( _i x. A ) ) e. CC -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
|
| 23 | 13 21 22 | 3syl | |- ( A e. RR -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
| 24 | 18 20 23 | 3eqtr4d | |- ( A e. RR -> ( sin ` A ) = ( Im ` ( exp ` ( _i x. A ) ) ) ) |