This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of resghm2b . (Contributed by Mario Carneiro, 13-Jan-2015) (Revised by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resghm2.u | |- U = ( T |`s X ) |
|
| Assertion | resghm2 | |- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S GrpHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resghm2.u | |- U = ( T |`s X ) |
|
| 2 | ghmmhm | |- ( F e. ( S GrpHom U ) -> F e. ( S MndHom U ) ) |
|
| 3 | subgsubm | |- ( X e. ( SubGrp ` T ) -> X e. ( SubMnd ` T ) ) |
|
| 4 | 1 | resmhm2 | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) |
| 5 | 2 3 4 | syl2an | |- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S MndHom T ) ) |
| 6 | ghmgrp1 | |- ( F e. ( S GrpHom U ) -> S e. Grp ) |
|
| 7 | subgrcl | |- ( X e. ( SubGrp ` T ) -> T e. Grp ) |
|
| 8 | ghmmhmb | |- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
| 10 | 5 9 | eleqtrrd | |- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S GrpHom T ) ) |