This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
||
| cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
||
| cnsubglem.4 | |- B e. A |
||
| Assertion | cnsubglem | |- A e. ( SubGrp ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| 2 | cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
|
| 3 | cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
|
| 4 | cnsubglem.4 | |- B e. A |
|
| 5 | 1 | ssriv | |- A C_ CC |
| 6 | 4 | ne0ii | |- A =/= (/) |
| 7 | 2 | ralrimiva | |- ( x e. A -> A. y e. A ( x + y ) e. A ) |
| 8 | cnfldneg | |- ( x e. CC -> ( ( invg ` CCfld ) ` x ) = -u x ) |
|
| 9 | 1 8 | syl | |- ( x e. A -> ( ( invg ` CCfld ) ` x ) = -u x ) |
| 10 | 9 3 | eqeltrd | |- ( x e. A -> ( ( invg ` CCfld ) ` x ) e. A ) |
| 11 | 7 10 | jca | |- ( x e. A -> ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) |
| 12 | 11 | rgen | |- A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) |
| 13 | cnring | |- CCfld e. Ring |
|
| 14 | ringgrp | |- ( CCfld e. Ring -> CCfld e. Grp ) |
|
| 15 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 16 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 17 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 18 | 15 16 17 | issubg2 | |- ( CCfld e. Grp -> ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) ) ) |
| 19 | 13 14 18 | mp2b | |- ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) ) |
| 20 | 5 6 12 19 | mpbir3an | |- A e. ( SubGrp ` CCfld ) |