This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a group sum on ` ( CCfld |``s RR ) ` to a finite sum on the reals. Cf. gsumfsum . (Contributed by Thierry Arnoux, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | regsumfsum.1 | ||
| regsumfsum.2 | |||
| Assertion | regsumfsum |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regsumfsum.1 | ||
| 2 | regsumfsum.2 | ||
| 3 | cnfldbas | ||
| 4 | cnfldadd | ||
| 5 | eqid | ||
| 6 | cnfldex | ||
| 7 | 6 | a1i | |
| 8 | ax-resscn | ||
| 9 | 8 | a1i | |
| 10 | 2 | fmpttd | |
| 11 | 0red | ||
| 12 | simpr | ||
| 13 | 12 | addlidd | |
| 14 | 12 | addridd | |
| 15 | 13 14 | jca | |
| 16 | 3 4 5 7 1 9 10 11 15 | gsumress | |
| 17 | 2 | recnd | |
| 18 | 1 17 | gsumfsum | |
| 19 | 16 18 | eqtr3d |