This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021) (Proof shortened by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recvs.r | |- R = ( ringLMod ` RRfld ) |
|
| Assertion | recvs | |- R e. CVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recvs.r | |- R = ( ringLMod ` RRfld ) |
|
| 2 | refld | |- RRfld e. Field |
|
| 3 | isfld | |- ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) |
|
| 4 | 3 | simprbi | |- ( RRfld e. Field -> RRfld e. CRing ) |
| 5 | 4 | crngringd | |- ( RRfld e. Field -> RRfld e. Ring ) |
| 6 | rlmlmod | |- ( RRfld e. Ring -> ( ringLMod ` RRfld ) e. LMod ) |
|
| 7 | 2 5 6 | mp2b | |- ( ringLMod ` RRfld ) e. LMod |
| 8 | rlmsca | |- ( RRfld e. Field -> RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) ) |
|
| 9 | 2 8 | ax-mp | |- RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) |
| 10 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 11 | 9 10 | eqtr3i | |- ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) |
| 12 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 13 | 12 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 14 | eqid | |- ( Scalar ` ( ringLMod ` RRfld ) ) = ( Scalar ` ( ringLMod ` RRfld ) ) |
|
| 15 | 14 | isclmi | |- ( ( ( ringLMod ` RRfld ) e. LMod /\ ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) /\ RR e. ( SubRing ` CCfld ) ) -> ( ringLMod ` RRfld ) e. CMod ) |
| 16 | 7 11 13 15 | mp3an | |- ( ringLMod ` RRfld ) e. CMod |
| 17 | 12 | simpri | |- RRfld e. DivRing |
| 18 | rlmlvec | |- ( RRfld e. DivRing -> ( ringLMod ` RRfld ) e. LVec ) |
|
| 19 | 17 18 | ax-mp | |- ( ringLMod ` RRfld ) e. LVec |
| 20 | 16 19 | elini | |- ( ringLMod ` RRfld ) e. ( CMod i^i LVec ) |
| 21 | df-cvs | |- CVec = ( CMod i^i LVec ) |
|
| 22 | 20 1 21 | 3eltr4i | |- R e. CVec |