This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021) (Proof shortened by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recvs.r | ⊢ 𝑅 = ( ringLMod ‘ ℝfld ) | |
| Assertion | recvs | ⊢ 𝑅 ∈ ℂVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recvs.r | ⊢ 𝑅 = ( ringLMod ‘ ℝfld ) | |
| 2 | refld | ⊢ ℝfld ∈ Field | |
| 3 | isfld | ⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) | |
| 4 | 3 | simprbi | ⊢ ( ℝfld ∈ Field → ℝfld ∈ CRing ) |
| 5 | 4 | crngringd | ⊢ ( ℝfld ∈ Field → ℝfld ∈ Ring ) |
| 6 | rlmlmod | ⊢ ( ℝfld ∈ Ring → ( ringLMod ‘ ℝfld ) ∈ LMod ) | |
| 7 | 2 5 6 | mp2b | ⊢ ( ringLMod ‘ ℝfld ) ∈ LMod |
| 8 | rlmsca | ⊢ ( ℝfld ∈ Field → ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) ) | |
| 9 | 2 8 | ax-mp | ⊢ ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) |
| 10 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 11 | 9 10 | eqtr3i | ⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) |
| 12 | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) | |
| 13 | 12 | simpli | ⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 14 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) | |
| 15 | 14 | isclmi | ⊢ ( ( ( ringLMod ‘ ℝfld ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℝfld ) ∈ ℂMod ) |
| 16 | 7 11 13 15 | mp3an | ⊢ ( ringLMod ‘ ℝfld ) ∈ ℂMod |
| 17 | 12 | simpri | ⊢ ℝfld ∈ DivRing |
| 18 | rlmlvec | ⊢ ( ℝfld ∈ DivRing → ( ringLMod ‘ ℝfld ) ∈ LVec ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ringLMod ‘ ℝfld ) ∈ LVec |
| 20 | 16 19 | elini | ⊢ ( ringLMod ‘ ℝfld ) ∈ ( ℂMod ∩ LVec ) |
| 21 | df-cvs | ⊢ ℂVec = ( ℂMod ∩ LVec ) | |
| 22 | 20 1 21 | 3eltr4i | ⊢ 𝑅 ∈ ℂVec |