This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 2 | subrgid | |- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 4 | eqid | |- ( ( subringAlg ` R ) ` ( Base ` R ) ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
| 5 | 4 | sralmod | |- ( ( Base ` R ) e. ( SubRing ` R ) -> ( ( subringAlg ` R ) ` ( Base ` R ) ) e. LMod ) |
| 6 | 3 5 | syl | |- ( R e. Ring -> ( ( subringAlg ` R ) ` ( Base ` R ) ) e. LMod ) |
| 7 | 1 6 | eqeltrid | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |