This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmlvec | |- ( R e. DivRing -> ( ringLMod ` R ) e. LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 2 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 3 | 1 2 | syl | |- ( R e. DivRing -> ( ringLMod ` R ) e. LMod ) |
| 4 | rlmsca | |- ( R e. DivRing -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 5 | id | |- ( R e. DivRing -> R e. DivRing ) |
|
| 6 | 4 5 | eqeltrrd | |- ( R e. DivRing -> ( Scalar ` ( ringLMod ` R ) ) e. DivRing ) |
| 7 | eqid | |- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 8 | 7 | islvec | |- ( ( ringLMod ` R ) e. LVec <-> ( ( ringLMod ` R ) e. LMod /\ ( Scalar ` ( ringLMod ` R ) ) e. DivRing ) ) |
| 9 | 3 6 8 | sylanbrc | |- ( R e. DivRing -> ( ringLMod ` R ) e. LVec ) |