This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse direction of isclm . (Contributed by Mario Carneiro, 30-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clm0.f | |- F = ( Scalar ` W ) |
|
| Assertion | isclmi | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> W e. CMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | simp1 | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> W e. LMod ) |
|
| 3 | simp2 | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> F = ( CCfld |`s K ) ) |
|
| 4 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 5 | 4 | subrgbas | |- ( K e. ( SubRing ` CCfld ) -> K = ( Base ` ( CCfld |`s K ) ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K = ( Base ` ( CCfld |`s K ) ) ) |
| 7 | 3 | fveq2d | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( Base ` F ) = ( Base ` ( CCfld |`s K ) ) ) |
| 8 | 6 7 | eqtr4d | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K = ( Base ` F ) ) |
| 9 | 8 | oveq2d | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( CCfld |`s K ) = ( CCfld |`s ( Base ` F ) ) ) |
| 10 | 3 9 | eqtrd | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 11 | simp3 | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K e. ( SubRing ` CCfld ) ) |
|
| 12 | 8 11 | eqeltrrd | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
| 13 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 14 | 1 13 | isclm | |- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
| 15 | 2 10 12 14 | syl3anbrc | |- ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> W e. CMod ) |