This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qcvs.q | |- Q = ( ringLMod ` ( CCfld |`s QQ ) ) |
|
| Assertion | qcvs | |- Q e. CVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcvs.q | |- Q = ( ringLMod ` ( CCfld |`s QQ ) ) |
|
| 2 | qsubdrg | |- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
|
| 3 | drngring | |- ( ( CCfld |`s QQ ) e. DivRing -> ( CCfld |`s QQ ) e. Ring ) |
|
| 4 | 3 | adantl | |- ( ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) -> ( CCfld |`s QQ ) e. Ring ) |
| 5 | 2 4 | ax-mp | |- ( CCfld |`s QQ ) e. Ring |
| 6 | rlmlmod | |- ( ( CCfld |`s QQ ) e. Ring -> ( ringLMod ` ( CCfld |`s QQ ) ) e. LMod ) |
|
| 7 | 5 6 | ax-mp | |- ( ringLMod ` ( CCfld |`s QQ ) ) e. LMod |
| 8 | 2 | simpri | |- ( CCfld |`s QQ ) e. DivRing |
| 9 | rlmsca | |- ( ( CCfld |`s QQ ) e. DivRing -> ( CCfld |`s QQ ) = ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) ) |
|
| 10 | 9 | eqcomd | |- ( ( CCfld |`s QQ ) e. DivRing -> ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( CCfld |`s QQ ) ) |
| 11 | 8 10 | ax-mp | |- ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( CCfld |`s QQ ) |
| 12 | 2 | simpli | |- QQ e. ( SubRing ` CCfld ) |
| 13 | eqid | |- ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) |
|
| 14 | 13 | isclmi | |- ( ( ( ringLMod ` ( CCfld |`s QQ ) ) e. LMod /\ ( Scalar ` ( ringLMod ` ( CCfld |`s QQ ) ) ) = ( CCfld |`s QQ ) /\ QQ e. ( SubRing ` CCfld ) ) -> ( ringLMod ` ( CCfld |`s QQ ) ) e. CMod ) |
| 15 | 7 11 12 14 | mp3an | |- ( ringLMod ` ( CCfld |`s QQ ) ) e. CMod |
| 16 | rlmlvec | |- ( ( CCfld |`s QQ ) e. DivRing -> ( ringLMod ` ( CCfld |`s QQ ) ) e. LVec ) |
|
| 17 | 8 16 | ax-mp | |- ( ringLMod ` ( CCfld |`s QQ ) ) e. LVec |
| 18 | 15 17 | elini | |- ( ringLMod ` ( CCfld |`s QQ ) ) e. ( CMod i^i LVec ) |
| 19 | df-cvs | |- CVec = ( CMod i^i LVec ) |
|
| 20 | 18 1 19 | 3eltr4i | |- Q e. CVec |