This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | re2ndc | |- ( topGen ` ran (,) ) e. 2ndc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
|
| 2 | 1 | tgqioo | |- ( topGen ` ran (,) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
| 3 | qtopbas | |- ( (,) " ( QQ X. QQ ) ) e. TopBases |
|
| 4 | omelon | |- _om e. On |
|
| 5 | qnnen | |- QQ ~~ NN |
|
| 6 | xpen | |- ( ( QQ ~~ NN /\ QQ ~~ NN ) -> ( QQ X. QQ ) ~~ ( NN X. NN ) ) |
|
| 7 | 5 5 6 | mp2an | |- ( QQ X. QQ ) ~~ ( NN X. NN ) |
| 8 | xpnnen | |- ( NN X. NN ) ~~ NN |
|
| 9 | 7 8 | entri | |- ( QQ X. QQ ) ~~ NN |
| 10 | nnenom | |- NN ~~ _om |
|
| 11 | 9 10 | entr2i | |- _om ~~ ( QQ X. QQ ) |
| 12 | isnumi | |- ( ( _om e. On /\ _om ~~ ( QQ X. QQ ) ) -> ( QQ X. QQ ) e. dom card ) |
|
| 13 | 4 11 12 | mp2an | |- ( QQ X. QQ ) e. dom card |
| 14 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 15 | ffun | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
|
| 16 | 14 15 | ax-mp | |- Fun (,) |
| 17 | qssre | |- QQ C_ RR |
|
| 18 | ressxr | |- RR C_ RR* |
|
| 19 | 17 18 | sstri | |- QQ C_ RR* |
| 20 | xpss12 | |- ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) |
|
| 21 | 19 19 20 | mp2an | |- ( QQ X. QQ ) C_ ( RR* X. RR* ) |
| 22 | 14 | fdmi | |- dom (,) = ( RR* X. RR* ) |
| 23 | 21 22 | sseqtrri | |- ( QQ X. QQ ) C_ dom (,) |
| 24 | fores | |- ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) ) |
|
| 25 | 16 23 24 | mp2an | |- ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) |
| 26 | fodomnum | |- ( ( QQ X. QQ ) e. dom card -> ( ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) ) ) |
|
| 27 | 13 25 26 | mp2 | |- ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) |
| 28 | 9 10 | entri | |- ( QQ X. QQ ) ~~ _om |
| 29 | domentr | |- ( ( ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) /\ ( QQ X. QQ ) ~~ _om ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) |
|
| 30 | 27 28 29 | mp2an | |- ( (,) " ( QQ X. QQ ) ) ~<_ _om |
| 31 | 2ndci | |- ( ( ( (,) " ( QQ X. QQ ) ) e. TopBases /\ ( (,) " ( QQ X. QQ ) ) ~<_ _om ) -> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc ) |
|
| 32 | 3 30 31 | mp2an | |- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc |
| 33 | 2 32 | eqeltri | |- ( topGen ` ran (,) ) e. 2ndc |