This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | re2ndc | ⊢ ( topGen ‘ ran (,) ) ∈ 2ndω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) | |
| 2 | 1 | tgqioo | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
| 3 | qtopbas | ⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases | |
| 4 | omelon | ⊢ ω ∈ On | |
| 5 | qnnen | ⊢ ℚ ≈ ℕ | |
| 6 | xpen | ⊢ ( ( ℚ ≈ ℕ ∧ ℚ ≈ ℕ ) → ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) ) | |
| 7 | 5 5 6 | mp2an | ⊢ ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) |
| 8 | xpnnen | ⊢ ( ℕ × ℕ ) ≈ ℕ | |
| 9 | 7 8 | entri | ⊢ ( ℚ × ℚ ) ≈ ℕ |
| 10 | nnenom | ⊢ ℕ ≈ ω | |
| 11 | 9 10 | entr2i | ⊢ ω ≈ ( ℚ × ℚ ) |
| 12 | isnumi | ⊢ ( ( ω ∈ On ∧ ω ≈ ( ℚ × ℚ ) ) → ( ℚ × ℚ ) ∈ dom card ) | |
| 13 | 4 11 12 | mp2an | ⊢ ( ℚ × ℚ ) ∈ dom card |
| 14 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 15 | ffun | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) | |
| 16 | 14 15 | ax-mp | ⊢ Fun (,) |
| 17 | qssre | ⊢ ℚ ⊆ ℝ | |
| 18 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 19 | 17 18 | sstri | ⊢ ℚ ⊆ ℝ* |
| 20 | xpss12 | ⊢ ( ( ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ* ) → ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) ) | |
| 21 | 19 19 20 | mp2an | ⊢ ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) |
| 22 | 14 | fdmi | ⊢ dom (,) = ( ℝ* × ℝ* ) |
| 23 | 21 22 | sseqtrri | ⊢ ( ℚ × ℚ ) ⊆ dom (,) |
| 24 | fores | ⊢ ( ( Fun (,) ∧ ( ℚ × ℚ ) ⊆ dom (,) ) → ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) ) | |
| 25 | 16 23 24 | mp2an | ⊢ ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) |
| 26 | fodomnum | ⊢ ( ( ℚ × ℚ ) ∈ dom card → ( ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ) ) | |
| 27 | 13 25 26 | mp2 | ⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) |
| 28 | 9 10 | entri | ⊢ ( ℚ × ℚ ) ≈ ω |
| 29 | domentr | ⊢ ( ( ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ∧ ( ℚ × ℚ ) ≈ ω ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ω ) | |
| 30 | 27 28 29 | mp2an | ⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ω |
| 31 | 2ndci | ⊢ ( ( ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases ∧ ( (,) “ ( ℚ × ℚ ) ) ≼ ω ) → ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ∈ 2ndω ) | |
| 32 | 3 30 31 | mp2an | ⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ∈ 2ndω |
| 33 | 2 32 | eqeltri | ⊢ ( topGen ‘ ran (,) ) ∈ 2ndω |